AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 41
PART II

1972

OMPUTER
CONFERENCE

December 5-7, 1972
Anaheim, California

The ideas and opinions expressed herein are solely those of the authors and are not necessarily representative of or
endorsed by the 1972 Fall Joint Computer Conference Committee or the American Federation of Information
Processing Societies, Inc. :

_Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

©1972 by the American Federation of Information Processing Societies, Inc., Montvale, New Jersey 07645. All
rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

CONTENTS
PART II

Cognitive and creative test generators.............................
A conversational item banking and test construction system.........

MEASUREMENT OF COMPUTER SYSTEMS—EXECUTIVE
VIEWPOINT ’

Measurement of computer systems—An introduction.

ARCHITECTURE—TOPICS OF GENERAL INTEREST
A highly parallel computing system for information retrieval.........

The architecture of a context addressed segment-sequential storage. . .

A cellular processor for task assignments in polymorphic multiprocessor
computers
A register transfer module FFT processor for speech recognition..

A systematic approach to the design of digital bussing structures.

DISTRIBUTED COMPUTING AND NETWORKS

Improvement in the design and pérformance of the ARPA network. . .

Cost effective priority assignment in network computers.............
C.mmp—A multi-mini processor...................ccoiiiieiiii.n.

C.ai—A computer architecture for multiprocessing in Al research.

NATURAL LANGUAGE PROCESSING

Syntactic formatting of science information........................
Dimensions of text processing.
Social indicators from the analysis of communication content.

MEASUREMENT OF COMPUTER SYSTEMS—SOFTWARE
VALIDATION AND RELJABILITY

The DOD COBOL compiler validation system.....................
A prototype automatic program testing tool
An approach to software reliability prediction and quality control. . ..
The impact of problem statement languages in software evaluation. . .

649
661

669

681
691

703
709

719

741

755

765

779

791
801
811

819
829
837
849

D. Vickers
B.

F.
F. B. Baker

A. Goodman

B. Parhami
L. D. Healy
K. L. Doty
G. Lipovski

J. A. Anderson
D. Casasent
W. Sterling

K. Thurber

E. Jensen

J. McQuillan
W. Crowther
B. Cosell

D. Walden

N. Sager
G. R. Martins
P. J. Stone

G. Baird

L. G. Stucki
N. Schneidewind
A. Merten

D. Teichroew

COMPUTER AIDED DESIGN

The solution of the minimum cost flow network problem using associa-
BIVE PrOCESSING . « . o oottt e e

Minicomputer models for non-linear dynamics systems..............
Fault insertion techniques and models for digital logic simulation... ..

A program for the analysis and design of general dynamic mechanical
systems., .. e

COMPUTER NETWORK MANAGEMENT
A wholesale retail concept for computer network management.

A functioning computer network for higher education in North
Carolna.o

SYSTEMS FOR PROGRAMMING

Multiple evaluators in an extensible programming system...........
Automated programmering—The programmer’s assistant............
A programming language for real-time systems.....................

Systems for system implementors—Some experiences from BLISS. . ..

MEASUREMENT OF COMPUTER SYSTEMS—MONITORS AND
THEIR APPLICATIONS

The CPM-X—A systems approach to performance measurement.
System performance evaluation—DPast, present, and future...........
A philosophy of system measurement.

HISTORICAL PERSPECTIVES

Historical perspectives—Computer architecture....................
Historical perspectives on computers—Components.................
Mass storage—Past, present, future................... e
Software—Historical perspectives and current trends................

INTERACTIVE PROCESSING—EXPERIENCES AND
POSSIBILITIES

NASDAQ—A real time user driven quotation system.............. .
The Weyerhaeuser information systems—A progress report.

The future of remote information processing systems................

Interactive processing—A user’s experience.

859

867

875

885

889

899

905
917
923

943

949
959
965

971
977
985
993

1009
1017
1025

1037

V. A. Orlando

P. B. Berra

J. Raamot

S. Szygenda

E. W. Thompson
D.
N.

A. Calahan
Orlandea

D. L. Grobstein
R. P. Uhlig

L. H. Williams

B. Wegbreit
W. Teitelman
A. Kossiakoff
T. P. Sleight
W. A. Wulf

R. Ruud
C. D. Warner
H. Cureton

. V. Wilkes
H. Pomerene

. 8. Hoagland
. F. Bauer

. M. Rosenberg

=R

>

G. E. Beltz

J. P. Fichten
M. J. Tobias
G. M. Booth
H. F. Cronin

IMPACT OF NEW TECHNOLOGY ON ARCHITECTURE

The myth is dead—Long livethe myth.

Distributed intelligence for user-oriented computing. S
A design of a dynamic, fault-tolerant modular computer with dynamic
redundancy. e

MOS LSI minicomputer comes of ge............c..ooiiieeeennn...

ROBOTICS AND TELEOPERATORS

Control of the Rancho electricarm.

Computer aiding and motion trajectory control in remote manipulators.

A robot conditioned reflex system modeled after the cerebellum.

DATA MANAGEMENT SYSTEMS

Data base design using IMS/360.
An information structure for data base and device independent report
generation. e

SIMS—An integrated user-oriented information system.............

A data dictionary/directory system within the context of an integrated
corporate data base........

MEASUREMENT OF COMPUTER SYSTEMS—ANALYTICAL
CONSIDERATIONS

Framework and initial phoses for computer performance improvement. .

Core complement policies for memory migration and analysis........
Data modeling and- analysis for users—A guide to the perplexed......

TECHNOLOGY AND ARCHITECTURE

(Panel Discussion—No Papers in this Volume)

1045

1049

1057

1069

1081

1089

1095

1105

1111

1117

1133

1141

1155

1163

Q

laser
ay III
. Chen

=

. Conn
exandridis
vizienis
. Schultz
. Holt

HEPZRE 239
>P:W o

==

M. L. Moe

J. T. Schwartz
A. Freedy

F. Hull

G. Weltman
J. Lyman

J. 8. Albus

R. M. Curtice

C. Dana
L. Presser
M. E. Ellis

|

tshuler

T. Bell

B. Boehm

R. Watson
S. Kimbleton
A. Goodman

- LANGUAGE FOR ARTIFICIAL INTELLIGENCE

Why conniving is better than plapning.

The QA4 language applied to robot planning.......................

‘Recent developments in SAIL—An ALGOL-based language for
artificial intelligence.............. e

USER REQUIREMENTS OF AN INFORMATION SYSTEM

A survey of language for statlng requirements for computer-based
information systems. i

MEASUREMENT OF COMPUTER SYSTEMS—CASE STUDIES

Abenchmark study..............

SERVICE ASPECTS OF COMMUNICATIONS FOR REMOTE
COMPUTING

Toward an inclusive information network.................: e

TRAINING APPLICATIONS FOR VARIOUS GROUPS OF
COMPUTER PERSONNEL

Computer jobs through training—A final project report.............

Implementation of the systems approach to central EDP training in
the Canadian government. coiiiiiiiiinn,
Evaluations of simulation effects in management training............

ADVANCED TECHNICAL DEVICES

Conceptual design of an eight megabyte high performance charge-
coupled storage device. i

Josephson tunneling devices for high performance computers....... . .
Magnetic bubble general purpose computer.

1171

1181

1193

1203

1225

1235

1243

1251

- 1257

1261

1269
1279

. Sussman
. McDermott
. Derksen
. Rulifson
. Waldinger

u’ﬁ><1c-4

D. Teichroew

J. C. Strauss

ench
oster

o=
=
=

G. Morgan
J. Down
W. Sadler
H.
A.

Parrett

M.
N.
R.
G.
H. A. Grace

B. Augusta

T. V. Harroun
W. Anacker
P. Bailey

B. Sandfort
R. Minnick
W. Semon

ADVANCES IN NUMERICAL COMPUTATION

On the numerical solution of III-posed problems using interactive

Eraphics. o
Iterative solutions of elliptic difference equations using direct methods. .

Tabular data fitting by computer..............
On the implementation of symmetric factorization for sparse positive-

definite SYStemS.t e

1299
1303
1309

1317

J. Varah
P. Concus
K. M. Brown

J. A. George

Cognitive and creative test generators

by F. D. VICKERS

University of Florida
Gainesville, Florida

INTRODUCTION

No one in education would deny the desirability of
being able to produce quizzes and tests by machine.
If one is careful and mechanically inclined, a teacher
can build up, over a period of time, a bank of questions
which can be used in a computer aided test production
system. Questions can be drawn from the question
(or item) bank on various bases such as random,
subject area, level of difficulty, type of question,
behavioral objective, or other pertinent characteristic.
However, such an item bank requires constant main-
tenance and new questions should periodically be
added.

It is the intention of this paper to demonstrate a
more general approach, one that may require more
initial effort but in the long run should almost elimi-
nate the need to compose additional questions unless
the subject material covered changes or the course
objectives change. This approach involves the design
and implementation - of a computer program that
generates a set of questions, or question elements, on
a guided but random basis using a set of predetermined
question models. Here the word generate is used in a
different sense from that used in item banking systems.
The approach described here involves a system that
creates questions from an item bank which is, for all
practical purposes, of infinite size yet does not require
a great deal of storage space. Storage is primarily
devoted to the program.

It appears at this stage of our research that this
approach would only be applicable to subject material
which obeys a set of laws involving quantifiable pa-
rameters. However, these quantities need not be purely
numerical as the following discussion will demon-
strate. The subject area currently being partially
tested with this approach is the Fortran language and
its usage.

The following section of this paper presents a brief
summary of a relatively simple concept which has

649

yielded a useful generator for a particular type of test
question. This presentation provides background ma-
terial for the discussion of concepts which are not so
simple and which are now under investigation. Fi-
nally, the last section provides some ideas for future
development.

SYNTAX QUESTION GENERATION

A computer program has been in use at the Uni-
versity. of Florida for over six years that generates a
set of quizzes composed of questions concerning the
syntax of Fortran language elements. See Figures 1
through 5. The student must discriminate between
each syntactic type of element as well as invalid con-
structions. The program is capable of producing quizzes
on four different sets of subject area as well as any
number of variations within each area. Thus a dif-
ferent variation of a quiz can be produced for each
section of the course. Figure 2 contains such a variation
of the quiz shown in Figure 1. The only change re-
quired in the computer program to obtain the variation
is to provide a single different value on input which
becomes the seed of a psuedo random number genera-
tor. With a different seed a different sequence of ran-
dom numbers is produced thereby generating different
variations of question elements.

For each question, the program first generates a
random integer between 1 and 5 to determine the
answer category in which to generate the element. As
an example, consider Question 27 in Figure 1. The
random integer in this case was 2 thus a Fortran
integer variable name had to be created for this ques-
tion. A call was made to a subroutine which proceeds
to generate the required name. This subroutine first
obtains a random integer between 1 and 6 which repre-
sents the length of the name. For Question 27, the
result was a 2. The routine then enters a loop to gen-
erate each character in the name. Since for integer
names the first character must be I, J, K, L, M or N,

650 Fall Joint Computer Conference, 1972

CIS 3Nn2 ' MAME . o v e eeeeeenenasaseassanas

oulz 1 SECTION 1 T ieieeenecnnns

THE 25 ELEMENTS BELOW BELONG TOD ONE OF THE FOLLOWING FIVE CATEGORIES.
IMDICATE ON BOTH THIS SHEET AND YOUR ANSWER SHEET IN WHICH CATEGORY
EACH ELEMENT BELONGS,

1. A FORTRAN 1V SPECIAL CHAPACTER

2. A FORTRAM 1V COMNSTANT

3. A FORTPAN IV SYMBOL

4. A VALID JOB CONTROL LANGUAGE COMMAND
5. NONE OF THE ABOVE

vees 1o MHJAGR cess . /SMOYV2
cees 2., _ +.+.15. JEND
eoee 3. B5KNFI2ST P T ¢

.se. b, 15856251 «...17. /CALC
esse 5. JCALC vee 180)

eses B. JMBK R i

eses 7. HN55 ‘ cees20, SWSLT
sees 3. 6.9543E-5 eeee21. T78LT7KUJ
eves A0 /HJ2 eess22. /1D 838475,56
wes 100) veee23. 42760,
eea 11, BBT7936460 : e 2, =

cees 12, +...25, LBOIX

. 13, JELIST

THE 25 ELEMENTS BELOW RELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

1. A FORTRAM IMNTEGER COMSTANT
2. A FORTRAN INTEGER VARIABLE
3. A FORTRAN REAL CONSTANT

L, A FORTRAN REAL VARIABLE

5. NNNE OF THE ABOVE

e 26, WY- cees39. 2,70E+7
eee.27. KS : ees b0, BLIE-3
vess28. APVYJK ' e bl LOLG3OE+L
ceee29, 584 cee B2, UHTET5023
«++.30. *00590 A T

+es.31, .655147 seeolth, EHHYS$GS
«es.32, .BMW0176 e 5, JUPTAWLTF
eee.33. MN ses B, 50.E+1
ees. 34, KOKLTP eee b7, 725

eees 35, PWKEO(ces 48, 3.E+3
es+.36. S5.LBE=-5 ‘ eo. B0, UYR
eee+37. Y5Z ees.50. U$OQR*S3447
.e..38. 37

SCORING FORMULA = RIGHT=*2 24.20

MINIMUM SCORE = 10

Figure 1—Quiz 1 example

Cognitive and Creative Test Generators

651

Cis 302 NAME ., .

----- e et 00 s 000 e s 000 e

nuz o1 SECTION 2 D eeenennnennnns

THE 25 ELEMENTS BELOW BELONG TOQ ONE OF THE

FOLLOWING FIVE CATEGORIES.

INDICATE AN BOTH THIS SHEET AND YOUR AMSYWER SHEET IN WHICH CATEGORY

EACH ELEMENT BELOMGS.

!
LT8242E+9
/v
JLLBYIT
CYOKE

,

JINSERT o
X/

1/7KG
762050882
8.E+h

1. .A FORTRAN IV SPECIAL CHARACTER

2. A FORTRAM (V CONSTANT

3. A FORTRAN |V SYMBOL

L. A VALID JOB CONTROL LANGUAGE COMMAND

5. MNONE OF THE ABOVE
cees 1o X$ZI=K I ¥
cees 2. = eese 15,
cees 3. . eees 16,
veee b, (B2522E+8 eee 17,
eees 5. JFLIST vees18.
vees Ao QIVSOGM R I
veee 7.0 cees2D,
vees 8. 5134C98Y4 ‘ ool
vees 9. PPRNKULMV cees22,
ceeo 10, OTEARAQRKG e 23,
cees1l. B504L8833 oo 2b,
cee 120 3.7 ' eees25,

LL..13. JINTER

THE 25 ELEMENTS BELOW BELONG TO ONE OF THE

1. A FORTRAN IMNTEGER COMNSTANT
2. A FNRTRAM INTEGEP VARIABLE
3. A FORTRAN REAL CONSTANT

4. A FORTRAN REAL VARIABLE

5. MNONE OF THE ABOVE

eee 260 JJB8 , A ee.s 39,
eeee27, K2NP3 R 3L
eves28. PFR ookt
veed20, AZJIVMT ceo b2,
cees30. 41 e b3,
erea 31, H3Z ceetl,
ceee32, L3FS eov 5,
vese33. SEEXOH cee B,
cvees 3. (BRE+S cee 7,
.+ee35. VFKCY cee 8,
cees 3R, R¥JVYP LR
- Y 3 eese50,

eees38. 9.E-2

SCORIMNG FORMULA = RIGHT=*2 24,30
MINIMUM SCORE = 10

Figure 2—Quiz 1 variation

Kov

FOLLOWING FIVE CATEGORIES.

H3V0DG
5.7453LE-3
184 :
Q5401HOQUVT
Y70D+47P0
3.04E+1
*810ELDL
HO3(
8.28730E+4
2

094
143

652 Fall Joint Computer Conference, 1972
CIS 302 NAME | [i ieteencencacnasaccnnns
Uiz 2 SECTION 1 IDieeeeeencennans

THE 25 ELEMENTS BELOW BELONG T0O ONE OF THE FOLLOWING FIVE CATEGORIES.
INDICATE ON BOTH THIS SHEET AND YOUR ANSWER SHEET IN WHICH CATEGORY
EACH ELEMENT BELONGS.

LRI

LI I Y

LRI Y

ee oo

e o o o e e o * o o

(b
DODONIUVIE NN

NOSEE B

e v e

feol13.

THE

000026.
000027.
0".28.
..l.zgo
eees 30,
Q...31O
ceve3?,
.‘0033.
I 1
....35.
...‘36.
..O.37.
cees38.

SCORING FOPMULA =

ALL OTHER EXPRESSIONS

Ul & W N

¢ o o o o

NONE OF THE ABOVE

LGO9F8=(] TM~-JSC)
H55W=ALOG(.4/Z$D/.96)
28¢(

Bl=NY7M-6
EXP{(-0.5/255))

~-8+3

(+(-L)

K=(-JUPT21)+5
COS(+M1J-D)
ABS(COS(5.69ANE+h»xL))
9.43E+4=(~1XERY)
TANH(ZXH**JTHY)
,((53)/1L15881)

A VALID ARITHMETIC STATEMENT
AN INVALID ARITHMETIC STATEMENT

ceeolh,
ee..15,
R
eeeal7.
cese 18,
ee..19.
.0..20.
ceea2l.
o222,
eees23,
e 2y,
eeea25.

AN EXPRESSION CONTAINING ONLY ONE MODE OF OPERAND (INTEGER OR RE

(CONTAINS AN =SIGM)

((7232+XDZU))
W=DROBL1)
Y1K) (L)

A, (395278364)

~S4X=((.00E-Q))

2358¢(
-WS5QUFX**1
+JQ*1
TN=%93296+9
37=(LE)+0
+DE=65919
.5041711

25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

1. A STATEMEMT CAUSING AN UNCONDITIONAL TRANSFER

. A STATEMENT HAVING A 2 WAY CONDITIONAL TPRANSFER
A 3 WAY CONDITIONAL TRANSFER
. A STATEMEMT HAVING A L4 WAY CONDITIOMAL TRANSFER
HONE OF THE AROVE AND/OR A SYNTACTICALLY INCORRECT STATEMENT

2

3. A STATEMENT HAVING
b

5

COTO(796,562,282),K18RW8
GO TO 175
GNTO(7886,65,9,1), INAIGO
coT0(7,7,7) ,MY1 -
IF(NP-1)9,25,9

GO TO 65
GOTO(77,5,402,5245), .81V
GOTN(3),N3017
GOTO(96,210,210,96),N
G0TN(8,8,8,8),CF7
IF((A))31,31,31
(KL)3350,672,3350
GOT0(282,681,1,5),NKS

RIGHT*2

MINIMUM SCORE = 10

ceea39,
N 11N
eee 1,
oo 2,
cee b3,
oot
eee 5.
00"’*6.
eee b7,
cee 8.
cee 9.
.e..50.

24,20

Figure 3—Quiz 2 example

(ASSUME NO
(ABNORMAL
(TERMINATIONS

GO TO 989
(9,82,30,9525), LUK
GNTN(51k,65,648,8),K$d
IF(-LGUZN)L, 3,810
IFC(RFG))16,4,22
IF(0W02/.5)5970,1,53
GOTO(917,657,3433), |
IFC(DZTLY))?2,2,2
GNTO(5,813,8,95),MOX0
GNTOC(9,8383,8,48),NOIAD
GOTO(Y,1,2,5283),LRIGPY
IF(ALOG(W))376,413,413

Cognitive and Creative Test Generators 653

ClS 302 NAME .. ccetteerenencennsnanannns
oUtZ 4 SECTION 1 IDeeeieeiineeans
THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

INDICATE ON BOTH THIS SHEET AND YOUR ANSWER SHEET IN WHICH CATEGORY
EACH ELEMENT BELONGS.

1. A VALID INPUT STATEMENT

2. A VALID OUTPUT STATEMENT

3. A VALID FIELD SPECIFICATION OR FORMAT CODE

4. A VALID FORMAT STATEMENT ‘

5. NONE OF THE ABOVE
esss 1. PRINT,JUN1,PZ «ees1l, READ,MLGN,GLK,J
eess 2. FORMAT(5H17ZV(,217) ceeel5. 12
eee. 3. E13.8 cess16. FORMAT(E1l1l.0,E17.4)
eess b. PRINT,VCXN1 eees17. PRINT,N,UDOQERS5,L
sese 5. PRINT,TAO0S! .+.+18, READ,IF
eses 6. READ(5,988)WZS «ee+19. PRINT,G,LT,X1IHJC
esss 7. PRINT,C,62,NCOZS «e.<20, FORMAT(2A2)
+ess 8. FORMAT(832) ees.21. EI11.12
eese 9. 551 cees22, 2X
eeee10. &1 «ees23. READ,M8
esee11l. 2E11.4 e 280 291
se++12. READ(5,73)X,MRWDVZ,JSY3Y «es.25, READ(5,32)E2146

eeee13. FORMAT('F',LH2RH*)

THE 25 ELEMENTS BELOW BELONG TO ONE NF THE FOLLOWING FIVE CATEGORIES.

1. A VALID SUBSCRIPT

2. A VALID INTEGER SUBSCRIPTED VARIABLE

3. A VALID PEAL SUBSCRIPTED VARIABLE

4. A VALID DIMEMSION STATEMENT FOR MAIN PROGRAMS ONLY

5. NONE OF THE ABOVE
ceed26. =7039. DIMENSION S(8,5,6,3,63)
cee.27. N57(161) co. B0, K$VISV4S
cee.28. 9*LVDMSL=9 co.. b1, EMQCT*LVOJY2,9%N,64k)
ceee20. K3G0JY(5%K=2) ce. B2, ZZI2U(5*NNBLY-L,MOU,59)
<ee.30. LP-543. DIMENSION ZAO5T(7,8,3)
ve.l31. 0 ,U4, DIMENSION FR0(1,5,6)
....32. DIMENSION 0$DC(13,4,7,3) ve. b5, M3LB(N,MR+5,9%JRC,5,NN
ve..33. DAYB7A(LXPG) ceo BB, DINO(M+9,NRGTHE, 8*NY)
cee 3. =k ee. b7, IRTKY
«e..35.. DIMENSION n(5,8,7,1,1,3)l8. DIMENSION JF91(L,5,7)
ceeo36. SWXCLILMHP-5) ve o BO, AZ(1+9,5%L9,8%],MVOV8+T)
veee37. SIB(NONUS, 7#JR1-8, I JUM) e 50, ITALUIMBU+L,K=6, 8*MMPM2)

vsee38, WSSC(3%xNM)

SCORING FOPMULA = RIGHT=*2 24,10
MINIMUM SCORE = 10

Figure 4—Quiz 4 example

654 Fall Joint Computer Conference, 1972

Cls 302 r‘A’dE....'...."....."...‘....
oIz 5 : SECTION 1 IDeuvevenvennnnnn
THE 25 ELEMENTS BELOW BELONG TO ONE OF THE FOLLOWING FIVE CATEGORIES.

INDICATE ON BOTH THIS SHEET AND YOUR ANSWER SHEET IN WHICH CATEGORY
EACH ELEMENT BELONGS.

1. A VALID DO STATEMENT WITH IMPLIED INCREMENT
2, A VALID DO STATEMENT WITH EXPLICIT INCREMENT
3. CAN BE EITHER AN INDEX, INITIAL VALUE, UPPER LIMIT OR INCREMEN’
L. CAN ONLY BE AN INITIAL VALUE, UPPER LIMIT OR INCREMENT
5. NONE OF THE ABOVE
eees 1. DO 90 J =2, 94, 6 ee..1ll, DO9O M = &, JU30
evse. 2. DO 7566 JDKAUT = 885, KI «e+.15. DO 9431 NY6P$ = 3, LM
eees 3. DO 22 I1AOS = K, 52 ssses16. DO 7 NOWY = 225, 1861
cees B LT2 ee+e17. 1,6378E-8 :
seee 5., DO 5 N = NACICR, 98 «e+.18., DO 9290 KM58NI = 85, N
eees 6. DO 4978 I = 4, 20 eeee19. N5
cese 7.5 «e++20. DO 82 J = 38, 927
sees 8. DO 8 JA9 = MYJ9, 351, 21 S eees21. L1YVOS
eees 9. 431436502 vees22, 0,
ees.10, 8489622 eees23., DO 453 KXR = J3, 7437
«es+11. DO 9 MCSXLU = 3, N7LC, H eees2l, 105
eesel2, 1 «e..25. DO 1583 K = 249, X

+++<.13. DO 8847 L = 35, 880, L11

THE 25 ELEMENTS BELOW BELONG TO ONE NF THE FOLLOWING FIVE CATEGORIES.
1. A VALID ARITHMETIC STATEMENT

2. A VALID CONTROL STATEMENT

3. A VALID INPUT OR OUTPUT STATEMENT

4., A VALID SPECIFICATION STATEMENT

5. NONE OF THE ABOVE
«es.26. GO TO NNBL "veee30., B5.3E+2=+40052%MW2
.+.+27. WRITE(6,17)CQU,YB7,VY cee 0. GO TO 9150
ve.+28. FORMAT(6X,18)41, READ,UU2CK,NX
««++29. READ,V9E,L1 ee.. 2. FORMAT(')=),',1A3,2F6.5)
cees30, 0070(17 51u8) COPAAF veeol3. FORMAT('=M+L',1X,'(")
vess31. STOP weeoll, PRINT,S,FWLKNL,NXWJb
vees32. G=ALOG(0.E-2)*9462.56 eee 5, VGAME=Y$TwxL/S2VFON
cese33. CONTINUE46, READ,KI,$049U, W
vees34, DIMENSION JBCL(2,3,5) veeo.87. DIMENSION LX(6,5,49,1)
vese35, (823,4,837,4),MZPRI18, GO TO 653
ves.36. FORMAT(7X) «...49, L=029668-MGR ‘
vees37. ODOYPP=NID vess50. FORMAT(7HOL1$D2/,'2)")

«s++38, PRINT,63777729,SC,AK14

SCORING FORMULA = RIGHT=*2 24.10
MINIMUM SCORE = 10

Figure 5—Quiz 5 example

Cognitive and Creative Test Generators

655

KEY

nu1z 1
SEC 1

e e o o o

* o o e o

[y)
O DN I WN -

O30 NNIIUVITESTWN
o o o o o o o s e o o

NNNMNNN
NOYUVNE W
« e o o o o

28,

WW W
N~ O 0
o« .

W W W W N
NOYUVMT W
.

o o e

SEEEWW
NN = O WD

th

L~
LW~V
e o o o

i~
0

7

50.

24,20

KEY

nulz 1
SEC 1

WDONTIUI & NN
e o o o o+ o e o o o o e & @

N NI PO b b b frod b b b b o b
NHODRNIVNTEWN D
. .

NN
£ W
e e o o o o e e o

WWWWNNN NN
W ODe~NIDIW

3.

W N W
~Noowm

33.

W
8]

10,

E—d
et
P

L Sl i i o
VI&E NN
. o

46.

= &
0~
o« o

L9,
50.

W?NHU‘\HWNH\N\N\NH:WWN’i\)wuUlI-l-.'—‘l\)WWHM#WWHHL‘H&'W:HMHWNWWP N\-ﬂl—lw

24,20

KEY
nuiz 1
SEC 1

13.
14,
15.
16.
17.
18.
10,
20.

22,
23.
24,
25.

27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
L1,
L2,
b3,
L,
45,
L6,
47.
48.
49,

50.

VIEWMWUIVMNHWWWEREWNUUIRNDNNWWRESENUVIWEHENSUTW R S RSV S N = VTR W WS NI U W

24,20

Figure 6—Key example

KEY

Utz 1
SEC 1

DOV & NN
o« o

[
-
. Ll

VIEWNRMWUVITUVINRE WWEWIERSEWUOURNNWWUIHETENUITWHOESEVITWHERE SRS RS RENREUINWWE N U - N

25,20

KEY

omz o1
SEC 1

OO0 U & WIN e

.

11.

12.

13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23,
2.
25,
26.
27.
28.
29,
30,
31.
32,
33,
31,
35.
36.
37.
38,
39,
L.
L1,
42,
b3,
by,
45.
46.
47,
48.
49,
5_0'

MEWNWUVIUVINHSWWWHEWUINNWWNUT SENUVTNFHN ST VTN ST SEP ORI UINWW S N U W

24.20

656 Fall Joint Computer Conference, 1972

the first random number in this loop would be limited
to a value between 1 and 6. Subsequent random num-
bers produced in this loop would be between 1 and 37
corresponding to the 26 letters, 10 digits and the $
sign. Thus, for Question 27, the characters KS resulted.
In similar fashion, the names for Questions 33, 34, and
43 were produced.

As each category for each question is determined
by the main program, the values between 1 and 5 are
kept in a table to be used as the answer key. This

table is listed for each quiz and section as shown in
Figure 6 for use in class after quiz administration is
complete. A card is also punched containing the key
for input to a computerized grading system which is
used to grade tests and homework and maintain

tecords for the course.

To illustrate the scope of this quiz generator in terms
of programming effort, the following list gives the
name and purpose of each subroutine in the total
package. Each routine is written in Fortran IV:

Name Purpose
MAIN General test formatting and key production
SETUP Prints a leader to help operator setup printer
QUIZi Calls routines for categories in each quiz
ALPNUM Generates single alphanumeric characters
SYMBOL ” a Fortran symbol
CONSTA " " constant, real or integer
SPECHA ” " special character
JCLCOM " " job command
NONE;i ” none of the above entries for each quiz
INTCON ” a Fortran integer constant
INTEXP ” ven " expression
REAEXP " " real "
MIXEXP ” 7 mixed "
MIXILE ” ' illegal expression
UNIARY ” " uniary operator expression
PAREN ” '" expression within parentheses
BINARY " ’" binary operator expression
FUNCT ” " function call
ARITH " " Fortran arithmetic statement
GOTON ” o GOTO statement
IFSTAT n” 1”7 n IF "
COGOTO " " comp GO TO "
INOUT Y " 1/0 statement
FIESPE " " format field specification
FORMAT " " format statement
DOSTAT " " Fortran DO statement
SIZCON 4 " constant of a given size
CONTRL ” '’ control statement
SPESTA ” " specification statement
INTVAR ” " integer variable
REACON " '’ real constant
REAVAR ” 1" yariable
STANUM " " statement number
SUBSCR " ’" subscripted variable
INTSUB " " integer " "
REASUB " " real oo
DIMENS ” " dimension statement

The only major criticism that can be made of these

or in combination. This understanding of the semantics

quizzes is that they fail to test the student on his
- understanding of the behavior of the computer under
the control of these various statements either singly

of Fortran, of course, is imperative if a programmer is
to be successful. Thus a method is needed for generat-
ing questions which will test the student in this under-

Cognitive and Creative Test Generators 657

standing. It is this problem the solution of which is
now being sought. The following sections describe
some of the major concepts discovered so far and
possible methods of solution.

SEMANTIC QUESTION GENERATION

Work is now under way for designing a system to
produce questions which require semantic understand-
ing as well as syntactic recognition of various Fortran
program segments. The major difficulties in such a
process is the determination of the correct answer for
the generation of a key and the computation of the
most probable incorrect answers for the distractors of
a question. Both of these determinations sometimes
involve semantic meanings (i.e., evaluation of expres-
sions or the execution of statements) which would be
difficult to determine in the same program that gen-
erates the question element in the first place. As a good
illustration, consider the following question model:

Given the following statement:

IF (X + 2.0 — SQRT(A)) 5,27,13

where X = 6.5

and A = 22.7

Transfer is made to the statement whose number is
(1) 5 (2) 27 (3) 13 (4) indeterminant

(5) none of the above as

the statement is invalid

Here the generator would have created the ex-
pression X + 2.0 — SQRT(A), the three statement
numbers 5, 27 and 13 and finally the two values of X

MAIN . ol TEST

GENERATOR
\ KEY KEY

GENERATOR

Figure 7—2nd stage involvement of key

and A. The order of the first four answer choices could
also be determined randomly. In this particular ques-
tion, determination of the distractors is no problem
but the determination of the correct answer involves
an algorithm similar to the following:

X =65
A =227
IF (X + 2.0 — SQRT(A)) 5, 27, 13

ANSWER AND
DISTRACTOR - TEST
GENERATOR
MAIN
GENERATOR
\\~\\\“‘-. KEY
GENERATOR KEY

Figure 8—2nd stage involvement of key and distractors
5 KEY =1
GO TO 10
27 KEY =2
GO TO 10
13 KEY =3
10 CONTINUE

This problem can be solved by letting the main
generator program generate a second program to com-
pute the key as well as generate the question for the
test. This second program would then be passed to
further job steps which would compile and execute
the program and determine the key for the question.
Figure 7 illustrates this concept.

As an illustration of a question involving more
difficult determination of answer and distractors, the
following question model is presented.

Given the statement:

I=J/2+4+X
where J = 11
- and X = 6.5

the resulting value of I is

(1) 115 21 3) 12 4) 6.5 (5) 6

The determination of the five answer choices would
have to be determined by an algorithm such as the

MAIN

GENERATOR

Figure 9—No 2nd stage involvement

658 :Fall Joint Computer Conference, 1972

THE NEXT FOUR QUESTIONS REFER TO THE FOLLOWING STATEMENT:
DO 746 LS2iQbL

K, N, 537
WHERE N = 961 AND K

1

1. 'THE FINAL VALUE OF THE DO VARIASBLE, LS2104, IS:
(1) 1 (2) 537 (3) 538 (4) 2
(5) NONE OF THE AROVE

2, THE STATEMENTS WITHIN THE DO LOOP ARE EXECUTED M TIMES,

WHERE M IS:
(1) 1 (2) 537 (3) 538 (4) 2
(5) NONE OF THE ABOVE

3. IF K = 962, THE STATEMENTS WITHIN THE LOOP WOULD BE
EXECUTED N TIMES WHERE N IS:

(1) 0 (2) 1 (3) UNDETEPMINARLE
(4) THE PROGRAM WILL NOT BE EXECUTED
(5) NONE OF THE .ABOVE

L, OME LEGITIMATE STATEMENT FOR THE LAST STATEMENT IN THE LOOP IS:

256/ XKL+46
GO TO 31
STOP

RETURN
WRITE(G,20)1

e e Yo Wan Won ¥
e W e
Nt N N N s

5. AGIVEN THE STATEMENT:
G0 TO (578,966,975,852,212,864,488,793),K6

WHERE K6 IS &4
TRANSFER IS MADE TN THE STATEMENT WHOSE NUMBER 1IS:

(1) TRANSFER IS MADE TO THE FIRST 8 MUMBEPRS WITHIN
THE PARENTHESIS IN THAT ORDER

(2) 852

(3) 4

(4) MORE IMFORMATION 1S MEENED

(5) TRANSFER IS NOT MANDE RECAUSE THE STATEMENT IS iNVALID

6. GIVEN THE STATEMENT:
IF(CXPJE+797) 43, 326, 896

IF CXPJE = .24
TRANSFER IS MADE TO THE STATEMENT NUMRERED:

(1) 6.24000 (2) 43 (3) 326 (4) 896
(5) NONE OF THE ABOVE

Figure 10—Semantic question examples

Cognitive and Creative Test Generators 659

following:

J =11

X =65
ANS1 =J/2 + X
IANS2 = J/2 + X
JANS3 = J/2. + X
ANS4 = X
TANS5 = X

In this problem not only does the determination of
the key depend on further computation but also the
_ distractors and the correct answer. Thus the second
" program generated by the first program must be in-
volved in the production of the test as well as the key.
Figure 8 illustrates this concept.

Some questions are very simple to produce as neither
key nor answer choices depend on a generated al-
gorithm. An example is:

Given the following statement:

DO 35 J5 = 3,28, 2

The DO loop would normally be iterated N times
where N is »

(1) 13 (2) 12 3 14 (4) 28 5) 35

Here the answer choices are determined from known
algorithms independent of the random question ele-
ments. No additional program is therefore required
for producing this test question and its key. Figure 9
illustrates this condition.

It would then appear that a general semantic test
generator would have to satisfy at least the conditions
exhibited in Figures 7, 8 and 9.

Figure 10 illustrates results obtained from a working
pilot program utilizing the method illustrated in
Figure 8. This program is a very complicated one and
was very difficult to write. To- produce a Fortran
program as output from a Fortran program involved

a good deal of tedious work such as writing Format -

statements within Format statements. It has become

' TEST
TEST TOSL /
ORIENTED PROCESSOR FORTRAN
SOURCE (SNOBOL) PROGRAM \
LANGUAGE KEY

Figure 11—TOSL Language environment

obvious that a more reasonable method of writing the
source program is needed.

FUTURE INVESTIGATION

An attempt will be made to design a source language
oriented toward test design which will then be trans-
lated by a new processor into a Fortran program. See

~ Figure 11.

This new language is visualized as being composed
of a mixture of languages including the possibility of
passing simple English statements (for the textural
part of a question) through the entire process to. the
test. Fortran statements could be written into the
source language where such algorithms are required.
Finally, statements to allow the specification of ran-
dom question elements and the linkage of these ran-
dom elements to the algorithms mentioned above will
be necessary.

Several special source language operators can be
introduced to facilitate the writing of question models.
Certain special characters can be chosen to represent
particular requirements such as question number
control, random variable control, answer choice con-
trol, answer choice randomization, and key production.
It is anticipated that SNOBOL would make an ex-
cellent choice for the processor language as it will
allow for rapid recognition of the source language
elements and operations and in a natural way gen-
erate and maintain strings which will find their way
into the Fortran output program and finally into the
test and key. The possibilities of such a system look
very promising and hopefully, such a system can be
made applicable to other subject fields as well as the
current one.

A conversational item banking and test construction system

by FRANK B. BAKER

Unaversity of Wisconsin
Madison, Wisconsin

INTRODUCTION

Most conscientious college instructors maintain a pool
of items to facilitate the construction of course examina-
tions. Typically, each item is typed on a 57 X8 card
and coded by course, book chapter, concept and other
such keys. The back of the card usually contains data
about the item collected from one or more administra-~
tions of the item. To construct a test, the instructor
peruses this item bank looking for items that meet his
current needs. Items are selected on the basis of their
content and further filtered by examining the item data
on the card, overlapping items are eliminated, and the
emphasis of the test is balanced. After having main-
tained such a system for a number of years, it became
obvious that there should be a better way. Conse-
quently, the total process of maintaining an item bank
and creating a test was examined in detail. The result
of this study was the design and implementation of the
Test Construction and Analysis Program (TCAP).
The design goal was to provide an instructor with a
computer based item banking and test construction
system. Because the typical instructor maintains a
rather modest item bank, the design emphasis was upon
flexibility and capabilities rather than upon capacity.
In order to achieve the necessary flexibility TCAP was
implemented as a conversational system using an inter-
active terminal. Considerable care was taken to build a
system that had a very simple computer-user inter-
face.

The purpose of the present paper is to describe the
TCAP system. The order of discussion proceeds from
the file structure to the software to the use of the system.
This particular order enables the reader to see the
underlying system logic without becoming enmeshed in
excessive interaction between components.

661

SYSTEM DESIGN
File structure

The three basic files of the TCAP system are the Item,
Statistics and Test files. A record in the Item file con-
tains the actual item and is a direct analogy to the
5"7%8" card of the manual scheme. A record in the
Statistics file contains item analysis results for up to ten
administrations of a given item. Test file records con-
tain summary statistics for each test that has been ad-
ministered. The general structure of all files is essentially
the same although they vary in internal detail. Each
file is preceded by a header (see Figure 1) that describes
the layout of the record in the file. Because changing
computers has been a way of life for the past ten years,
the header specifies the number of bits per character and
number of characters per word of the target computer.
These parameters are used to make the files word length
independent. In addition, it contains the number of
sections per record, the number of charaecters per record
section, characters per record and the number of
records in the file. The contents of the headers allow all
entries to data items within a record to be located via a
relative addressing scheme based upon character counts.
This character oriented header scheme enables one to
arbitrarily specify the record size and layout at run
time rather than compile time; thus, enabling several
different users of the system to employ their own record
layouts without affecting the TCAP software.

A record is divided into sections of arbitrary length,
each preceded by a unique two character flag and termi-
nated by a double period. Sub sections within a section
are separated by double commas. These flags serve a
number of different functions during the file creation
phase and facilitate the relative addressing scheme used
to search within a record. Figure 2 contains an item

662 Fall Joint Computer Conference, 1972

File Header }
Element Contents

1 Name of file
2 Number of bits per character in target
) computer
3 Characters per word in the target computer
4 Characters per record in the file
5 Number of sections in the record
6-15 Number of characters in section i where

1=1,2,...10

Figure 1—Typical file header

file record that represents a typical record layout. The
basic record layout scheme is the same in all files, but
they differ in the contents of the sections. A record in
the item file consists of seven sections: Identification,
Keyword, Item, Current item statistics, Date last used,
and Frequency of use, previous version identification.
The ID section contains a unique identification code for
the item that must begin with *$. The keyword section
contains free field keyword descriptors of the item
separated by commas. The item section contains the
actual item and was intended primarily for multiple
choice items. Since the item section is free field, other
item types could be stored, but it has not been tried to
" date. The current item statistics section stores the item
analysis information from the most recent administra-
tion of the item. The first element of this section is the
identification code of the test from which the item
statistics were obtained. The internal layout of this
section is fixed so that the FORTAP item analysis pro-
gram outputs can be used to update the information.
The item statistics section contains information such as
the number of persons selecting each item response, item
difficulty, and estimates of the item parameters. The
next section contains the date of the most recent ad-
ministration of the item. The following section contains

Item File Record

*§ STAT 01 520170. . -
Z7Z, EDPSY,STATISTICS,ESTIMATORS,MLE. .

a count of the total number of times the item has been
administered. These two pieces of information are used
in the test construction section to prevent over use of
an item. The final section of the item record contains
the unique identification code of a previous version of
the same item. This link enables one to follow the
development of a given item over a number of
modifications. . ,

A record in the Statistics file contains 11 sections, an
item identification section and 10 item statistics sec-
tions identical in format to the current item statistics
section of the item record. These 10 sections are main-
tained as a first in, last out push down stack with an
eleventh data set causing the first set to be pushed end
off. Records in the Test file are similar to those of .the
Item file and have five sections: Identification, Key-
words, Comments, Summary statistics of the test, and
a link to other administrations of the same test. The
comments section allows the instructor to store any
anecdotal information he desires in a free field format.
The link permits keeping track of multiple uses of the
same test such as occurs when a course has many sec-
tions.

The record layouts were designed so that there was a
one to one correspondence between each 72 characters
in a section and the punched cards used to create the
file. Such a correspondence greatly facilitates the ease
with which an instructor can learn to use the system.
Once he has key punched his item pool, the record lay-
outs within each file are quite familiar to him and the
operations upon these records are easily understood.
This approach also permitted integration of the FOR-
TAP item analysis program into the TCAP system with
a minimum conversion effort.

It should be noted that the file design allows many

different instructors to keep their items in the same

basic files. Alternatively, each instructor can maintain

QQ ONE OF THE CHARACTERISTICS OF MAXIMUM LIKELIHOOD ESTIMATORS IS THAT IF SUFFICIENT ESTI-
MATES EXIST, THEY WILL BE MAXIMUM LIKELIHOOD ESTIMATORS. ESTIMATES ARE CONSIDERED SUFFI-

CIENT IF THEY,,
(A) USE ALL OF THE DATA IN THE SAMPLE, ,

(B) DO NOT REQUIRE KNOWLEDGE OF THE POPULATION VALUE,,
(C) APPROACH THE POPULATION VALUE AS SAMPLE SIZE INCREASES, ,

(D) ARE NORMALLY DISTRIBUTED.
WW TEST 01 220170. .

1100014 .18 — .21 —01.36 —0.22,,
1210054 .69 + .53 —00.93 .63,
1300010 .12 + .64 —01.77 —0.83. .
VV 161271. .

YY 006. . ,

$$ STAT 02 230270. .

Figure 2—A record in the item file

Conversational Item Banking and Test Construction System 663

his own unique set of basic files, yet, use a common copy
of the TCAP program. The latter scheme is preferred
as it minimizes file search times.

Software design

The basic programming philosophy adopted was one
of cascaded drivers with several levels of utility rou-
tines. Such an approach enables the decision making at
each functional level to be controlled by the user inter-
actively from a terminal. It also enables each level of
software to share lower level utility routines appropriate
to its tasks. Figure 3 presents a block diagram of the
major software components of the TCAP system. The
main TCAP driver is a small program that merely pre-
sents a list of operational modes to the user: Explore,
Construct, and File Maintenance. Selection of a particu-
lar mode releases control to the corresponding next
lower level driver. These second level drivers have ac-
cess to four search routines that form a set of high level
utility routines. The Identification search routine
enables one to locate a record in a file by its unique
identification code. The Keyword search routine imple-
ments a search of either the item or test file for records
containing the combination of keywords specified by the
user. At present a simple conjunctive match is used, but
more complex logic can be added easily. The Parameter
search utility searches the item or statistics files for
items whose item parameter values fall within bounds
specified by the user. The Linked search routine allows
one to link from a record in one file to a corresponding
record in another file. For example, from the item file
to the statistics file or from the item file to the test file.
Due to the extremely flexible manner in which the user
can interact with the three files it was necessary to ac-
cess these four search routines through the Basic File
Handling routine. The BFH routine initializes the file

- . TEST FILE
EXPLORE CONSTRUCTION MAINTENANCE FORTAP
(Batch)
5 File
]Eﬁéc Creation
Handler From Cards
Linked Item pi Key
Search Parameter Search Word
Search Search

Figure 3—TCAP software structure

handlers from the parameters in the headers, coordinates
the file pointers, and handles certain error conditions.
Such centralization relieves both the mode implementa-

tion routines and the search routines of considerable

internal bookkeeping related to file usage. The four
search routines in turn have access to a lower level of
utility routines, not depicted in Figure 3. These lowest
level utilities are routines that read and write records,
pack and unpack character strings, convert numbers
from alphanumeric to integer or floating point, and
handle communication with the interactive terminal.

The purpose of the EXPLORE routine is to permit
the user to peruse the three basic files in a manner
analogous to thumbing through a card index. The EX-
PLORE routine presents the user with a display listing
seven functions related to accessing records within a
file. These functions are labeled: Identification, Key-
word, Parameter, Linked, Restore, Mode and Con-
tinue. The first four of these correspond to the four
utility search routines. The Restore option merely re-
verses the linkage process and causes the predecessor
record to become the active record. The Mode option
causes an exit from the EXPLORE routine and a re-
turn to the Mode display of the TCAP driver. The Con-
tinue option allows one to continue a given search using
the present set of search specifications.

The Test Construction Routine is used to assemble an
educational test from the items in the item file. Test
construction is achieved by specifying a set of general
characteristics all items should have and then defining
sub sections of the test called areas. The areas within
the test are defined by user supplied keywords and the
number of items desired in an area. The Test Construc-
tion routine then employs the Keyword search routine,
via BFH, to locate items possessing the proper key-
words. This process is continued until the specified num-
ber of items for an area are retrived or the end of the
item file is reached. Once the requirements of an area
are satisfied the user is free to define another area or
terminate this phase. Upon termination certain sum-
mary data, predicted test statistics, and the items are
printed.

The function display of the File Maintenance routine
presents the user with three options: Create, FORTAP
and Single. The Create option is a batch mode process
that uses the File Creation from Cards subroutine
(FCC) to create any of the three basic files from a card
deck. To use this option, it is necessary to simulate, via
cards, the interaction leading to this point. The FOR-
TAP option is interactive, but it assumes that the
FORTAP item analysis routine has created a card image
drum file containing the test and item analysis results.
The file contains the current item statistics section for
each item in the test accompanied by the appropriate

664 Fall Joint Computer Conference, 1972

identification sections and test links. A test file record
for the test is also in this file. The File Maintenance
routine transfers the current item statistics section of the
item record of each item in the test to the corresponding
record in the statistics file. It then uses the FCC
subroutine to replace the current item statistics section
of the item records with the item statistics section from
the FORTAP generated file. If an item record does not
exist in the Item file a record is created containing only
the identification sections and the current item sta-
tistics. The test record is then stored in the Test file
and the header updated. The Single option is used to
perform line item updates on a single file. Under this
option the File Maintenance routine assumes that card
images are stored in an update file and that only parts
of a given record are to be changed.

OPERATION OF THE SYSTEM

The preceding sections have described the file struc-
ture and the software design. The present section de-
scribes some interactive sequences representing typical
uses of the TCAP system. The sequences contained in
Figure 4 have had the lengthy record printouts deleted.
The paragraphs below follow these scripts and are in-
tended to provide the reader with a “feel” for the sys-
tem operation. :

Upon completion of the usual remote terminal sig
in procedures, the TCAP program is entered and the
mode selection message—TYPE IN TCAP MODE=
EXPLORE, CONSTRUCT, FILE MAINTENANCE
is printed at the terminal. The user selects the appropri-
ate mode, say EXPLORE, by typing the name. The
computer replies by printing the function display mes-
sage. In the EXPLORE mode, this message is the list of
possible search functions. The user responds ty typing
the name of the function he desires to perform, key-
word in the example. The computer responds by asking
the user for the name of the file he wishes to search.
Next, the user is instructed to type in the keywords
separated by commas and terminated by a double
period. The user must be aware of the keywords em-
ployed to describe the items and tests in the files.
Hence, it is necessary to maintain a keyword dictionary
external to the system. This should cause little trouble
as the person who created the files is also the person us-
ing the system. Upon receipt of the keywords, the EX-
PLORE routine calls the Keyword Search routine to
find an item containing the particular set of keywords.
The contents of the item record located are then typed
at the terminal. At this point the system asks the user
for further instructions. It presents the message
FUNCTION DISPLAY NEEDED. A negative reply

causes a return to the Mode selection display of the
TCAP driver. A YES response causes the EXPLORE
function list to reappear. If one wishes to find the next
item in the file possessing the same keyword pattern,
CONTINUE, is typed and the search proceeds from
the last item found. In Figure 4 this option was not
selected. Returning to the Mode selection or reaching
the end of the file being searched causes the Basic File
Handler to restore the file pointers to the file origin.
The next sequence of interactions in Figure 4 links
from a record in the Item file to the corresponding rec-
ord in the Statistics file. It is assumed that one of the
other search functions has been used to locate a record
prior to selection of the LINKED option, the last item
found via the Keyword search in the present example.
The computer then prompts the user by asking for the
name of the file from which the linking takes place,
item in the present example. It then asks for the name
of the file the user wishes to link to statistics in the ex-
ample. There are several illegal linkages and the Linked
search routine checks for a legal link. The Linked search
routine extracts the identification section of the item
record and establishes the inputs to the Identification
Search routine. This routine then searches the Sta-
tistics file for a record having the same identification
section. It should be noted that a utility routine used a
utility routine at this point, but the cascaded control
was supervised by the EXPLORE routine. When the
proper Statisties record is found its contents are printed
at the terminal. Again, the system asks for directions
and the user is asked if he desires the function display.
In the example, the user obtained the function display

and selected the Restore option. This results in the prior

record, the item record, being returned to active record
status and the name of the active file being printed.
The system allows one to link and restore to a depth of
three records. Although not shown in the example se-
quences, the other options under the EXPLORE mode
operate in an analogous fashion.

The third sequence of interactions in Figure 4 shows
the construction of an examination via the TCAP sys-
tem. Upon selection of the Construct mode, the com-
puter instructs the user to supply the general item
specifications, namely the correct response weight and
the bounds for the item parameters Xs and 8. These
minimum, maximum values are used to filter out items
having poor statistical properties. The remainder of the .
test construction process consists of using keywords to
define areas within the test. The computer prints AREA

- DEFINITION FOLLOWS: YES, NO. After receiving

a YES response the computer asks for the number of
items to be included in the area. The user can specify
any reasonable number, usually between 5 and 20.
The program then enters the normal keyword search

Conversational Item Banking and Test Construction System

665

TYPE IN TCAP M@DE =EXPLORE, CONSTRUCTI®N, FILE MAINTENCE EXPLORE
FUNCTION DISPLAY
TYPE KIND @F SEARCH DESIRED
IDENT,KEYWORD,PARAMETER,LINKED,RESTORE,CONTINUE,M@DE
KEYWORD
TYPE IN FILE NAME
ITEM
TYPE IN KEYWQRDS SEPARATED BY COMMAS
TERMINATE WITH ..
SKEWNESS,MEAN,MEDIAN. .
*$AAAC 02 230270. .
THE ITEM RECORD WILL BE PRINTED HERE

FUNCTION DISPLAY NEEDED YES,N@®
YES
FUNCTIQN DISPLAY
TYPE KIND QF SEARCH DESIRED

IDENT,KEYW@RD,PARAMETER,LINKED,RESTQRE,CONTINUE,MODE
LINKED

LINKED SEARCH REQUESTED

TYPE NAME OF FILE FROM
ITEM

TYPE NAME OF FILE LINKED TQ
STAT

*$AAAC 02 230270. .

THE STATISTICS RECORED WILL BE PRINTED HERE

FUNCTIQN DISPLAY NEEDED YES,NO
YES
FUNCTION DISPLAY
TYPE KIND @QF SEARCH DESIRED :
IEDNT,KEYW@RD,PARAMETER,LINKED , RESTORE,CONTINUE,MODE
RESTORE
ITEM RECORD FILE RESTQRED
FUNCTIQN DISPLAY NEEDED YES,NO
YES
FUNCTION DISPLAY
IDENT,KEYWORD,PARAMETER,LINKED,RESTORE,CONTINUE,MODE
MODE .
TYPE IN TCAP MODE =EXPLORE,CONSTRUCTION,FILE MAINTENANCE
CONSTRUCT
TYPE IN WEIGHT ASSIGNED TQ@ ITEM RESPONSE
1
TYPE IN MINIMUM VALUE QF X50
—-2.5
TYPE IN MAXIMUM VALUE OF X50
+2.5
TYPE IN MINIMUM VALUE OF BETA
.20
TYPE IN MAXIMUM VALUE OF BETA
1.5
AREA DEFINITION FOLLOWS YES,NO
YES
TYPE IN NUMBER OF ITEMS NEEDED FOR AREA
10
TYPE IN KEYWORDS SEPARATED BY COMMAS
TERMINATE WITH ..
CHAPTERIL,STATISTICS, THEQRY,FISHER. .
AREA DEFINITION FOLLOWS YES,NO
YES i ‘
TYPE IN NUMBERS QOF ITEMS NEEDED FQR AREA
10

Figure 4—Operational sequences

666 Fall Joint Computer Conferénce, 1972

TYPE IN KEYWOQRDS SEPARATED BY COMMAS
TERMINATE WITH .. :
CHAPTER2,DISTRIBUTION,FREQUENCY,INTERVAL. .

AREA DEFINITION FQLLOWS YES,NO
. YES
TYPE IN NUMBER QF 1ITEMS NEEDED F@R AREA
10
TYPE IN KEYWQRDS SEPARATED BY COMMAS
TERMINATE WITH ..

CHAPTERS3,BINOMIAL,PARAMETER,COMBINATION,PERMUTATION. .

AREA DEFINITIQN FQLLOWS YES,NQ
YES
TYPE IN NUMBER @F ITEMS NEEDED FOR AREA
10
TYPE IN KEYWORDS SEPARATED BY COMMAS
TERMINATE WITH ..
CHAPTER4,HYPPTHESES,LARGE SAMPLE,Z TEST. .
AREA DEFINITION FOLLOWS YES,NQ

NO
ITEMS REQUESTED PER AREA 10 10 10 10
ITEMS FOUND PER AREA 6 9 8 10

PREDICTED TEST STATISTICS
MEAN= 16.0758
STANDARD DEVIATION = 4.561111
RELIABILITY= .893706
DO YOU WANT ITEMS PRINTED YES,NO
No .
ITEM IDENTIFICATION X50

1+$AAAA 03 230270. . .470000

BETA

.450000

(THIS INFORMATION WILL BE PRINTED FQR ALL ITEMS)
TYPE IN TCAP M@DE =EXPLORE,CONSTRUCTIPN,FILE MAINTENANCE

EXIT .
THAT IS END QF RUN,GO@DBY

Figure 4—(Continued)

procedures and the user enters the keywords that de-
fine this area of the test. Upon receipt of the keywords
the item file is searched for items possessing the proper
descriptors and whose item parameters are within
bounds. Completion of the keyword search results in a
return to the area definition message. The area defini-
tion and search process can be repeated up to ten times.
A NO response to the area definition message results in
"the printing of the table showing the number of items
requested per area and the number actually found per
area. The table is followed by the predicted values of
the test mean, standard deviation, and internal con-
sistency reliability index. These values are computed
from the current values of the item parameters Xs and
8 of the retrieved items. These predicted values assist
the test constructor in determining if an appropriate
set of items has been selected by the system. The pro-
gram then asks the user if he wants the selected items
printed. If not, only the identification section and the
values of the item parameters are printed. This informa-
tion allows one to use the Identification search option
of the EXPLORE routine to retrieve the items at a
later date. A minor deficiency of the present test con-

struction procedures is that a reproducible copy of the
test is not produced. A secretary uses the hard copy to
prepare a stencil or similar master. With some minor
programming this final step could be accomplished.

Some enhancements

At the present time the full TCAP design has not
been implemented and a number of additional features
should be mentioned. Two sections of the item record,
date of use, and frequency of use can be employed to
prevent over use of the same items. A step in the test
construction mode will enable the user to specify that
an item used since a certain date or more than a specified
number of times should not be retrieved. The software
for this additional filtering has been written but not de-
bugged.

A significant enhancement is one that enables the
test constructor to manipulate the items constituting a
test. For example, an instructor may not be satisfied
with the items the computer has retrieved in certain
areas. He may wish to delete items from one area and

Conversational Item Banking and Test Construction System 667

add items to another. This can be done interactively
and the predicted test statistics should be re-calculated
as each transaction occurs. At the present time, such
manipulations require a re-run of the total test construc-
tion process. An extension allowing considerable freedom
in manipulating items of the constructed examination
via the utility search routines has been designed but not
implemented.

The TCAP system was originally designed to be
operated from an alphanumeric display, hence the mode
display, function display terminology, but the present
implementation was accomplished using teletypes.
Alphanumeric displays have been acquired and many
user actions will be changed from typed in responses to
menu selections via a cursor. These displays will relieve
the user of the major portion of the typing load and
make the system a great deal easier to use.

Some observations

The TCAP design goals of flexibility, capability and

ease of use produced a conflicting set of software require- -
ments. These requirements combined with the fact that

the operating system of the computer forced one to
treat all drum files as if they were magnetic tapes re-
sulted in a challenging design problem. The require-
ment for providing the user with computer based
equivalents of present capabilities was solved through
the use of cascaded drivers and multiple levels of utility
routines. Such a scheme enables the drivers to be con-
cerned with operational logic and the utility routines
with performing the functions. The use of multiple
levels of utility routines provided functional isolation
that simplified the structure of the programs. The final
TCAP program was highly modular, hierarchical in
structure and quite compact.

The use of relative addressing in conjunction with
the character oriented file records and a header scheme
proved to be advantageous. The approach makes trans-
ferring TCAP to other computers an easy task. Hope-
fully, the only conversion problem will be adjusting
the FORTRAN A formats to the target computer. A
significant feature of the approach is that record lay-
outs within files are defined at run time rather than at
compile time. The practical effect is that each instructor
can tailor the number of sections within a record and
their size to suit his own needs. Thus, the item, sta-
tistics, and test files can be unique to a given user.
TCAP modifies its internal file manipulations to process

the record specifications it receives. Such flexibility is
important in the university setting where each in-
structor feels his instructional procedures are unique.

One consequence of the high degree of operational
flexibility and the range of capabilities provided is that
housekeeping within TCAP is extensive. A good ex-
ample of this housekeeping occurs when the File Main-
tenance routine updates the item files from the item
analysis results file generated by the FORTAP pro-
gram. Because not all items in the test will have records
in the item file, the File Maintenance routine must keep
track of them, create records for them, add them to the
item file, and' inform the user that the records have
been added. There are numerous other situations of
comparable complexity throughout the TCAP system.
Handling them smoothly and efficiently is a difficult
task. Because TCAP was implemented on a large com-
puter, such situations were generally handled by creat-
ing supplementary drum files and provided working
arrays in core. The use of random access files would
have greatly simplified many of the internal house-
keeping problems.

On the basis of the author’s experience with the de-
sign and implementation of the TCAP system one
salient conclusion emerges. Such programs must be
designed as complete software systems. To attempt to
design them in a sequential fashion and implement
them piecemeal is folly. The total system needs to be
thought through very carefully and the possible inter-
actions explored. If provision is to be made for future,
but undefined, extensions, the structure of the program
and the files must be kept simple to reduce the interac-
tion effects of such enhancements. It appears to be a
characteristic of this area of computer programming
that complexity and chaos await your every decision.
This caveat is a reflection of the many design iterations
that were necessary to achieve the TCAP system. The
end product of this process is a system that provides
the instructor with an easy to use tool that can be of
considerable assistance. Being able to maintain an item
bank and assemble tests to meet arbitrary specifications
aids one in performing an unavoidable task. To do so
quickly and efficiently is worth the investment it takes
to convert one’s item bank into machine readable form.
The TCAP system illustrates again that tasks per-
formed by manual means can often be quite difficult to
implement by computer. In the present case a reason-
able implementation was achieved by making the
system interactive and taking advantage of the capa-
bilities of both man and machine.

Measurement of computer systems—

An introduction

by ARNOLD F. GOODMAN

MecDonnell Douglas Astronautics Company
Huntington Beach, California

NEED FOR MEASUREMENT

Computer systems have become indispensable to the
advancement of management, science and technology.
They are widely employed by academic, business and
governmental organizations. Their contribution to
today’s world is significant in terms of both quantity
and quality. ,

This significant growth of computer utilization has
been accompanied by a similar growth in computer
technology. Faster computers with larger memories
and more flexible input and output have been intro-
duced, one after another. Interactive, multiprocessing,
multiprogramming, realtime and timesharing have
been transformed from catchy slogans into costly
reality—or at least, partial reality.

In addition, computer science has eome into being,
and has made great progress from an art toward a
science. Departments of computer science have ap-
peared within many colleges and universities. A new
profession has been created and is attempting to
mature.

These three areas of phenomenal growth—computer
utilization, computer technology ~ and computer
science—have produced the requirement for a new
field, measurement of computer systems. In an at-
mosphere of escalating computer cost and increasing
budget scrutiny, measurement provides a bridge
between design promises and operational performance.
This function of measurement is complemented by the
traditional need for measurement of any art in search
of a science.

ACTIVITY INVOLVING MEASUREMENT

A limited survey was conducted of the 1960-1970
literature on measurement of computer systems. This
survey included all Proceedings of Spring Joint Com-

669

puter Conferences, Proceedings of Fall Joint Computer
Conferences, Journals of the Association for Computing
Machinery and Communications of the ACM, as well
as selected Proceedings of ACM National Conferences
and Proceedings of Conferences on Application of
Simulation. The resulting personal bibliography and
the unpublished bibliographies of Bell!, Miller? and
Robinson>—each with its own bias and deficiency—
were utilized to obtain an initial indication of pioneer
activity involving measurement.

Measurement of computer systems was presaged by
Herbst, Metropolis and Wells* in 1945, Shannon® in
1948, Hamming® in 1950 and Grosch? in 1953. Bagley,?
Black,® Codd,*® Fein,* Flores,’? Maron®® and Nagler'
published articles concerning it during 1960. These
were followed in 1961 with the related contributions
of Barton,® Flores,®® Gordon,”” Gurk and Minker,!8

" Hosier,'® and Jaffe and Berkowitz.2® During 1962, there

were pertinent papers by Adams? Baldwin, Gibson
and Poland,? Dopping,? Gosden and Sisson * Hibbard, 2
Patrick,? Sauder,? Simonsen? and Smith.?

Many of the concepts and techniques which were
developed for defense and space systems—whose focal
point was hardware rather than software—are also
applicable to computer systems. The system design,
development and testing sequence was perfected by
the late 1950’s. Since the early 1960’s, system verifi-
cation, validation, and cost and effectiveness evalua-
tion have been prevalent. The adaptation of these
concepts and techniques to measurement of computer
systems—especially software—is not as simple as
system specialists tend to believe, yet not as difficult
as software specialists tend to believe.

In the middle 1960’s, sucksconcepts and techniques
began to be applied to the selection and evaluation of
computer systems, and to software as well as hardware.
Ratynski,3® Searle and Neil,® Liebowitz® and Piligian
and Pokorney® describe the Air Force and National
Aeronautics and Space Administration (NASA) adapta-

670 Fall Joint Computer Conference, 1972

tion of their system acquisition procedures to software
acquisition. Attention then shifted to measurement of
computer system performance, with a corresponding
increase of activity. Sackman® discusses computer
system development and testing, based upon the Air
Force and NASA experience. An important develop-
ment of the period was the formation of a Hardware
Evaluation Committee within SHARE? during early
1964, and its evolution into the SHARE Computer
Measurement and Evaluation Project® during August
1970, which served as a focal point for significant
progress.%

A preliminary but informative 1ndlcatlon of activity
_involving computer system effectiveness evaluation
prior to 1970 appears below. When a comprehensive
bibliography on measurement of computer systems is
compiled and annotated, the gross characterization
of activity given in this paper may be refined and
expanded—especially in the area of practical contribu-
tions and contributors to measurement. Raw material
for that bibliography and characterization may be

found in the unpublished bibliographies of Bell,'
Miller,? Robinson® and the author mentioned above— -

as well as a bibliography by Crooke and Minker,® one
in preparation by Menck,® and the selected papers in
Hall.& ‘

During a keynote address at Computer Science and

Statistics: Fourth Annual Symposium on the Interface . -

in September 1970, Hamming coined the name of
“compumetrics”’—in the spirit of biometrics, econo-
metrics and psychometrics—for measurement of com-
puter systems.?® It is fitting that the naming of
compumetrics occurred at this symposium, since
measurement of computer systems is truly a part of
the interface—or area of interaction—of computer
science and statisties.#
Hamming phrased it well when he stated: 4°

“The director of a computer center is respon-
sible for managing the utilization of large
amounts of money, people and resources.
Although he has a complex and important
statistical problem, his decisions are normally
based upon the simplest collection and anal-
ysis of data—since he usually knows little
statistics beyond such elementary concepts
as the mean and variance. His need for sta-
tistics involves both the operational perfor-
mance of his hardware and software, and the
“:environment provided by his organization
-+ and users.”

“A new discipline that seeks to answer these .
questions—and that might be called ‘compu-

metrics™—is in the process of evolving. Karl
Pearson and R. A. Fisher established them-
selves by developing novel statistical solutions
to significant problems of their time. Compu-
metrics may well provide -contemporary
statisticians with many such opportunities.”

‘Workshop sessions on compumetrics followed
Hamming’s remarks at the Fourth Symposium on the
Interface. During these sessions,** “‘there developed a
feeling that this symposium marked a beginning which
must not be allowed to be an end”’—that sessions on
compumetrics be scheduled at the Fifth Symposium
on the Interface, and that a local steering committee
be formed to promote interest in compumetries.

It is not surprising, therefore, that a Special Interest
Committee on Measurement of Computer Systems—
SICMETRICS—was:initiated within the Los Angeles
Chapter of the Association for Computing Machinery
during April 1971. SICMETRICS is complhng a
bibliography on compumetrics.3?

There were sessions on computer system models and
analysis at the Fifth Annual Princeton Conference on
Information Sciences and Systems® in March 1971.
In April 1971, the ACM Special Interest Group on
Operating Systems—SIGOPS—sponsored a Workshop
on System Performance Evaluation®—with sessions
on instrumentation, mathematical models, queuing

‘models, simulation models and performance evalua-~

tion. There were sessions on system evaluation and
diagnostics at the 1971 Spring Joint Computer Con-
ference® during May 1971. This was followed in No-
vember 1971 by workshop sessions on compumetrics

‘at the Fifth Symposium on the Interface,* by a session

on operating system models and measures at the 1971
Fall Joint Computer Conference,” and by a Conference
on Statistical Methods for Evaluation of Computer
Systems Performance®—with sessions on general ap-
proaches, evaluation of current systems, input analysis,
software reliability, system management, design - of
experiments and regression analysis. During November
1971, the ACM Special Interest Committee on Mea-
surement and Evaluation—SICME—was also formed.

The ACM Special Interest Groups on Programming
Languages—SIGPLAN—and on Automata and Com-
putability Theory—SIGACT—sponsored a Conference
on Proving Assertions about Programs* in January
1972. A Symposium on Effective Versus Efficient
Computing**—with sessions on responsibility, getting
results, implementation, evaluation, education and
looking ahead—was held during March 1972, and so
was a session on computer system models at the Sixth
Annual Princeton Conference on Information Sciences
and Systems.5® In May 1972, there was a session on

Measurement of Computer Systems 671

compumetrics at the 1972 Technical Symposium of
the Southern California Region of ACM, and there
were sessions on system performance measurement
and evaluation at the 1972 Spring Joint Computer Con-
ference.’ An ACM Special Interest Group on Pro-
gramming Languages—SIGPLAN—Symposium on
Computer Program Test Methods followed during
June 1972.%2

The National Bureau of Standards and ACM are
jointly sponsoring a series of workshops and con-
ferences on performance measurement. An informative
discussion of many practical aspects of compumetrics
is contained in Canning.® Finally, the 1972 Fall Joint
Computer Conference® in December 1972, has co-
ordinated sessions on measurement of computer sys-
tems-—executive viewpoints, system performance, soft-
ware validation and reliability, analysis considerations,
monitors and their application, and case studies.

Across the Atlantic, a Performance Measurement
Specialist Group was organized within the British
Computer Society in early 1971. A number of its work-
ing groups are functioning on specific projects, and it
sponsored a conference in September 1972,

This summary of activity involving measurement
of computer systems clearly outlines the growth and
increasing importance of compumetrics. Proposal of
a structure for compumetrics is, therefore, quite ap-
propriate. The presentation below is general and sug-
gestive, rather than detailed and complete—as is
appropriate for an introduction.

STRUCTURE FOR MEASUREMENT

A structure—or framework—is proposed for measure-
ment of computer systems, to serve as a background
for both understanding and developing the subject.
It provides not only a common set of terms—which
may be familiar to some and new to others, but also a
guide to the current—as well as potential—extent and
content of compumetrics. Such a structure is critical
for subjects that have matured and crucial otherwise,
whether or not there is universal agreement on detailed
portions of it. The conceptual framework for Air Force
and NASA acquisition of computer systems?*—#* pro-
vides a context in which not only the structure for
measurement, but also the structure for effectiveness
evaluation, should be considered.

Compumetrics concerns measurement in—internal
to—or of—external to—computer systems. As for
biometrics, econometrics and psychometrics, this means
measurement of a general nature applied to computer
systems in a broad sense. A computer system is taken
to be a collection of properly related elements, including

a computer, which possesses a computing or data
handling objective. The structure for compumetrics is
deseribed in terms of computer system evolution and
computer system operation. Computer system evolution
is divided into design, development and testing, and
computer system operation is divided into objective,
composition and management. A sequence of ques-
tions—including the if, why, what, where, when, how
much and how of measurement—should be developed
and then answered for each element of the structure.

The structure is presented from the viewpoint of a
statistician who is knowledgeable about computers, in
order to augment Hamming’s viewpoint as a computer
scientist who is knowledgeable about statistics. In
addition, this structure -is considerably more compre-
hensive and definitive than that which is implied by
Hamming’s original discussion.#® An outline version
of it appeared in Locks.

At present, measurement of computer systems might
be characterized as a growing collection of measure-
ments on their way toward a science, and in need of
planning and analysis to help them get there. Bell,
Boehm and Watson® provide an adaptation of the
scientific method to performance measurement and
improvement of a computer system: from under-
standing the system and analyzing its operation,
through formulating performance improvement hy-
potheses and analyzing the probable cost-effectiveness

" of the corresponding modifications, to testing specific

hypotheses and implementing the appropriate com-
binations of modifications—as well as testing the cost-
effectiveness of these combinations. As a complement
to this approach, the author® presents a user’s guide
to data modeling and analysis—including a perspective
for viewing and utilizing such a framework for the
collection and analysis of measurements. That paper5é
discusses the sequence of steps which leads from a
problem through a solution to its assessment, some
aspects of solving problems which should be considered,
and an approach to the design and analysis of a com-
plex system through utilization of both experimental
and computer simulation data.

Measurement and system evolution

Within this and the following sections, appropriate
terms appear in capital letters for emphasis. Such a
procedure-produces not only clarity of exposition, but
also a lack of smoothness, in the resulting text. The
advantage of the former is sought, even at the dis-
advantage of the latter. In addition, words are employed
in their usual nontechnical sense.

Computer systems evolve from DESIGN through

672 Fall Joint Computer Conference, 1972

DEVELOPMENT to TESTING. For illustrative
purposes, we present one partition—from among the
many which are possible—of this evolution into more
basic components. It is meaningful from both a mana-
ger’s and a user’s point of view. For a given computer
system, the accomplishment of more than one com-
ponent may be occurring simultaneously, and the
accomplishment of all components may not be feasible.

The DESIGN of a computer system involves the
system what and how. A REQUIREMENTS ANALY-
SIS ascertains user needs and generates system ob-
jectives, and a FUNCTIONAL ANALYSIS translates
system objectives into a desired system framework.
Then SPECIFICATION SYNTHESIS transforms
the objectives and desired framework into desired
performance and its description. Finally, STRUCTURE
develops system framework from the desired frame-
work, and SIZING infers system size from its frame-
work. ‘

System: DEVELOPMENT is concerned with im-
plementing the system what and how. It proceeds from
HARDWARE AND. SOFTWARE SELECTION—
which includes the decision to make or buy, through
HARDWARE AND SOFTWARE ACQUISITION—
which involves either making or buying—and HARD-
WARE AND SOFTWARE COMBINATION—
which implements the framework in terms of acquired
hardware and software, to SOFTWARE PROGRAM-
MING—which includes the programming of additional
software. How well the framework was implemented
is then determined by HARDWARE AND SOFT-
WARE VERIFICATION. Development is completed
by SYSTEM DOCUMENTATION to describe the
system what and how, and by PROCEDURE DOCU-
MENTATION to describe the how of system operation
and use.

TESTING of a computer system has the objective
of assessing how well the system performs. First,
system INTEGRATION—which could have been
included under development—assembles the hardware,
software and other elements into a system. This is
followed by system VALIDATION, for ascertaining
how well the specifications were implemented and for
contributing to quality assurance. COST EVALUA-
TION determines how much the system costs in terms
of evolution and operation, and EFFECTIVENESS
EVALUATION determines how well the system per-
forms in terms of operational time, quality and impact
upon the user. The final step in testing is, of course,
OPERATION—performance for the user.

McLean¥ proposes a characterization for the “all-too-
true life cycle of a typical EDP system: unwarranted
enthusiasm, uncritical acceptance, growing concern,
unmitigated disaster, search for the guilty, punishment

of the innocent, and promotion of the uninvolved.” An
excellent discussion of computer system development
and testing—whose application should alter this cycle—
is provided by Sackman.’* In addition, measurement
was apparently employed in many places within the
design, development and testing sequence for the in-
formation system of Winbrow.5®

Where is measurement currently utilized in the sys-
tem evolution sequence? Measurement is inherently
involved in hardware specification synthesis, sizing
and cost evaluation. It is employed to a limited extent
during hardware requirements analysis and selection,
and it emerged in importance as a significant con-
tributor to hardware wvalidation and performance
monitoring—which is a portion of effectiveness evalua-
tion. We are only beginning to consider serious and
systematic measurement as it concerns software veri-
fication, validation, and cost and effectiveness evalua-
tion. In fact, we are beginning to use the same ter-
minology for hardware and software that was used in
the early 1960’s for defense and space systems—which
were predominately noncomputer hardware. ‘‘Re-
quirements for AVAILABILITY of Computing System
Facilities’’®® provides an excellent example, with its
use of reliability, maintainability, repairability and
recoverability. '

Where should measurement be utilized in the evolu-
tion sequence? It probably has an appropriate use in

~ most, if not almost all, components of the sequence.

In particular, system verification, validation, and cost
and effectiveness evaluation—as well as reliability and
its fellow <lities®®—have no real meaning without
measurement.

Measurement and system operation

A computer system operation has COMPOSITION
and an OBJECTIVE, as well as being subject to
MANAGEMENT. As a guide to discussion and
thought, a useful—but not unique—division of system
operation into more basic elements is now deseribed.
A given computer system, however, may not involve
all of these elements.

COMPOSITION of a computer system concerns
what constitutes the system. The main component,
by tradition, has been computer HARDWARE—which
may involve input, memory, processing, output, com-
munication or special purpose equipment. Since the
means for communicating with that equipment currently
costs from one to ten times as much as the hardware,
the main component really is SOFTWARE—which
may involve input, storage and retrieval, operating,
application, -simulation, output or communication
program packages. The system may also contain

Measurement of Computer Systems 673

FIRMWARE, which is either soft hardware or hard
software—such as a microprogram, and PERSONNEL.
How to operate and use the system is covered by the
operating PROCEDURE. The system aspects include
all two way INTERFACES such as hardware-software,
all three way INTERFACES such as firmware-
personnel-procedure, all four way INTERFACES such
as hardware-software-personnel-procedure, and the five
way INTERFACE of hardware-software-firmware-
personnel-procedure.

What the computer system does primarily—al-
though it may do many things concurrently or se-
quentially—is the system OBJECTIVE. DATA MAN-
AGEMENT emphasizes storage and retrieval of data
by the system. Operating upon data by the system is
the focus of DATA PROCESSING. COMMAND
AND CONTROL stresses input and output of data
by the system, and decisions aided by the system.

As observed by Boehm, an alternative view is that
all three types of systems aid the making of decisions:
data management systems provide the least aid, data
processing systems provide more aid, and command
and control systems provide the most aid. The dis-
tinction among these also depends upon what the
environment is and who the user is—data manage-
ment or command and control systems are frequently
called information systems. In addition, the same
system— or a portion of it—might frequently be utilized
for more than one objective.

Computer system MANAGEMENT involves sys-
tem administration and supervision. PLANNING is
projecting the system’s future. Getting operations
together and focused constitutes COORDINATION,
and keeping operations together and directed con-

stitutes CONTROL. REVIEW provides an assessment.

of the past and present, while TRAINING provides
system operators. Finally, USER INTERACTION
concerns system calibration and acceptance by the user.

Measurement has traditionally been employed on
computer hardware and-personnel, has begun to be
employed on software and firmware, and may someday
be employed on procedure and interfaces. It has been
applied in data management and data processing, but
should also be applied in command and control. As
for management in general, measurement is only be-
ginning to be utilized in computer system planning,
coordination, control, review, training and user inter-
action.

STRUCTURE FOR EFFECTIVENESS
EVALUATION

Consideration of the need for, activity involving,
and structure for measurement implies that an impor-

tant unsolved problem for the 1970’s is the evaluation
of computer system effectiveness. That this is true for
library information systems is explicitly stated in a
recent report by the National Academy of Sciences
Computer Science and Engineering Board,®® and that
it is true for computer systems in general is implicitly
stated in a recent report by GUIDE International.®®
As Maclean observed,® we are like Oscar Wilde’s
cynic: “A man who knows the price of everything, and
the value of nothing.”

Effectiveness evaluation determines how well the
system performs in terms of operational time, quality
and impact upon the user. It has both an internal or
inwardly oriented aspect—which determines how well
the system responds to any need, and is more efficiency
than effectiveness—and an external or outwardly
oriented aspect—which determines how well the sys-
tem responds to the actual need, and is truly effective-
ness. The point of view that is taken as to what
effectiveness is and how it should be evaluated is also
extremely important. Viewpoints of the user and his
management should be considered, as well as view-
points of the system and its management. In terms
of both aspects and viewpoints, effectiveness evaluation
is much broader than mere performance measurement.

Evaluating the impact of the system upon a user is
essentially the reverse of system design or selection,
which evaluates the impact of the user upon a potential
or real system. In order to accomplish this, it is neces-
sary to evaluate how well the promises of system
design or selection are fulfilled by system operation.
An informative, as well as interesting, exercise would
be the real impact evaluation of applications such as
those surveyed in 1965 by Rhodes,’ Ramo,®, Gerard,®
Maloney, McBrier.® Merkin and Long,% Gates and
Pickering,% Ward,* Baran®® and Schlager.”

Based upon Air Force and NASA experience,
Sackman® provides a thorough treatment of computer
system development and testing. This treatment in-
cludes:

e A survey of system engineering, human factors,
software and operations research points of view
on testing and evaluation—all of which are im-
plicitly oriented inwardly toward the system,
rather than outwardly toward the user.

e A description of test levels, objectives, phasing
within development and operation, approach and
chronology.

o A discussion of the analogy between scientific
method and system development—during which,
a sequence of increasingly specific hypotheses is
posed and tested, as the implicit promises of

674 Fall Joint Computer Conference, 1972
xxxi. XXX, XXXV, XXXV,
e UseR -] T UNIT - « | CENTER MANAGEMENT
E MANAGEMENT AND USER AND CENTER AND UNIT
=
g L] UhiT AND SER i ano centen " ENTER AND UNIT
> USSR GENERAL |75 - GENERAL GENERAL ™ - GENERAL
. xxv. xxvi, xxvii,
g UNIT, USER UNIT, CENTER CENTER, UNIT
USER ANDTASK |~ - AND TASK AND TASK ~ =~ AND TASK
- = = =
1 [, £
| 1 | et il H
L K | " USER DATA |-_ S ™ —] " Uit DATA = iysremoenten S
T JSER 'SYSTEM UNIT 1 i € &
| emm—m e | | S J 2
f w
it f 3
§ } t | | . . t 4 vi. . x g
= — USER DATA = UNIT DATA — [=4
bt : NEED NEED DATA é
t
' t | ! g
| " <
" rasx F—-‘J " OTHER USER Y Srwen unir %
SOURCES SOURCES z
]
—I} z
—~ w

xu.
UNIT OUTPUT \
TIME

X,
Xix, '
CENTER

UNIT INPUT el
TiME e

XX,
USER INPUT

xiv.
| UNIT OUTPUT
QUALITY QUALITY

XV,

Xxi. ‘
centen
b o veut eyl

t QUALITY QUALITY

xvi. | oxxan,
UNIT QUTPUT
IMPACT I IMPACT

EFFECTIVENESS

r
] xxn,

USER INPUT
| racy

Figure 1—Structure for evaluation of data management or command and control system effectiveness

design become explicit promises during develop-
ment and explicit performance during operation.
e A summary of the philosophical roots of this
analogy and approach.
» A short bibliography.

It constitutes an excellent contribution to effectiveness
evaluation, as well as a firm foundation for the frame-
work of Bell, Boehm and Watson,® but more is needed.
In addition, almost all library system effectiveness
evaluation has been centered around—if not actually
restricted to—variations of two simple ratios, called
relevance and recall. And Fingings 1 and 2 in the
National Academy of Sciences report® state that much
more is needed.

The complexity and importance of -effectiveness
evaluation combine to require a significantly broader
and deeper, as well as more meaningful, structure. Most
of the significance and ultimate payoff associated with
computer systems involve the external environment
and aspects of the system, from various points of view.
Despite that fact, the preponderance of effectiveness
evaluation has not focused upon such aspects from the
appropriate points of view.347-79

A structure for computer system effectiveness evalua-
tion is proposed, as both a step toward fulfilling that
need and an elaboration of the structure for compu-
metrics. Figure 1 contains a general version of the
structure for data management or command and

control systems, and Figure 2 contains a general version
of the structure for data processing systems. The
graphic presentations of the figures are complemented
by the corresponding verbal deseriptions—which em-
ploy words in their usual nontechnical sense. Effective-
ness evaluation of a computer system might require a
combination of the structures in Figures 1 and 2, since
the system might frequently be utilized for more than
one objective. In addition, the entire structure might
not be of interest for a given system.

An initial indication of activity involving computer
system effectiveness evaluation is then summarized.
Finally, selected papers that illustrate such activity
are briefly discussed. This summary and discussion
serve as a background against which to view the pro-
posed structures.

Evaluation of data management or command and
control systems

In Figure 1, there are three main categories of
characteristics—FLOW, EFFECTIVENESS and
VIEWPOINTS—all of which reside within an ECO-
NOMIC AND POLITICAL ENVIRONMENT.
FLOW characteristics (I-XI) involve the flow of data
and need for data, from a user and his task through the
system unit and center back to the user and his task.
Those characteristics (XII-XXIII) which describe
how well the flow of data satisfies the need for data—

Measurement of Computer Systems 675

both internal and external to the system-—comprise
EFFECTIVENESS. VIEWPOINTS contain the
various points of view (XXIV-XXXYV) regarding the
flow and its effectiveness. All of these characteristics
are’ embedded within an ECONOMIC AND PO-
LITICAL ENVIRONMENT, whose influence is
sometimes explicit and sometimes implicit yet always
present.

A USER (I) of the system and a TASK (II) which
he is performing jointly generate a need for data, called
USER DATA NEED (III). To satisfy this need, the
user contacts either the appropriate outlet of the
system—SYSTEM UNIT (IV)—or other sources for
data—OTHER USER SOURCES (V). The unit es-
sentially becomes a user now and contacts either the
SYSTEM CENTER (VII) or OTHER UNIT
SOURCES (VIII), in order to satisfy its UNIT DATA
NEED (VI). DATA (IX) is then output by the system
or other sources to the user for performance of his task.
Finally, there may also be USER DATA INPUT (X)—
such as data generated by the user in his task or by user
management regarding an impending change in its
basic need—by the user to the unit, and UNIT DATA
INPUT (XI)—such as data generated by the unit or
by unit management regarding an impending change
in its basic need—by the unit to the system.

Operational characteristics of the unit and center
in terms of time—how quickly or how often—are

XXX,
USER MANAGEMENT

grouped under UNIT OUTPUT TIME (XII) and
CENTER OUTPUT TIME (XIII), those in terms
of quality—how well or how completely—are grouped
under UNIT OUTPUT QUALITY (XIV) and CEN-
TER OUTPUT QUALITY (XV), and those in terms
of impact—how responsively or how significantly—
are grouped under UNIT OUTPUT IMPACT (XVI)
and CENTER OUTPUT IMPACT (XVII). Time
characteristics emphasize the internal aspects of the
system and impact characteristics emphasize the ex-
ternal aspects of the system, while quality charac-
teristics emphasize both the internal and external
aspects of the system. In addition, time is the easiest
to measure objectively as well as the least meaningful
quality is more difficult to measure objectively than
time and less difficult to measure objectively than
impact, as well as more meaningful than time and less
meaningful than impact . .. impact is the most dif-
ficult to measure objectively as well as the most mean-
ingful. Effectiveness may be viewed as the average,
over all users and tasks, of the effectiveness for specific
user and task combinations. : '
There may also be USER INPUT TIME (XVIII)
and UNIT INPUT TIME (XIX)—to indicate how
quickly or how often the user inputs data to the unit
and the unit inputs data to the center, USER INPUT
QUALITY (XX) and UNIT INPUT QUALITY
(XXI)—to indicate how well or how completely these

XXX,

XXX
CENTER MANAGEMENT

XXXH

uNIT UNIT

AND USER AND CENTER AND UNIT

@
E XXV xxvi. XXVIIL XXIX.
o USER GENERAL — - UNIT AND UNIT AND -~ CENTER AND
§ USER GENERAL CENTER GENERAL UNIT GENERAL
z XXH. XX, XXiV. XXV.
> USERAND TASK |~ -— UNIT, USER UNIT, CENTER . - CENTER, UNIT
AND TASK AND TASK AND TASK
e e e
1
it h h ! £
| w
. 1 vn:‘_.SER X vi, 3
5 : S
USER 1 PROGRAMMING USER AND UNIT l;gisssm — 3
1 INPUT PROCESSING INPUT €
1 T T T s
i — - _1H il — 2
t b o= e R z
— T 1 — -4
1 I O E (O I i i 1 . 2
@ "] . . V. vi. f g
3 : USER — SYSTEM — — SYSTEM
USER AND UNIT st
TASK | PROGRAMMING PROGRAMMING PROCESSING NEED PROCESSING =
| NEED UNIT CENTER 14
T
i 1 l l L
¥ =d ! - | P
=
o
‘ z
-— -— Q
o
w
xvi. X. xvit, Xt
USER INPUT UNIT OUTPUT UNIT INPUT CENTER
a TIME TIME Time oureut
w r-——=-"=-"r_ -——---"1T">=--"—-""-""-"—"")/"""~""~"">"~""~"'r—/-————j~—"—————
2 1oxvi XH. XIX. xan.
g | USER INPUT UNIT OUTPUT UNIT INPUT CENTER
= QUALITY QUALITY QUALITY oureuy
o Fem— e ——— QUALITY
o [} Xx'usm xwv. XXI. v
w 1 INPUT UNIT OUTPUT UNIT INPUT CENTER
w | e IMPACT IMPACT ouTteuT
Lo_Meact 1 bL___T___ IMPACT

Figure 2—Structure for evaluation of data processing system effectiveness

676 Fall Joint Computer Conference, 1972

were accomplished, and USER INPUT IMPACT
(XXII) and UNIT INPUT IMPACT (XXIII)—to
indicate how responsively or how significantly these
were accomplished. In this case, the user is serving the
system and the above roles are reversed. Internal as-
pects of the user are focused upon by time and ex-
ternal aspects of the user are focused upon by impact,
while both internal and external aspects of the user are
focused upon by quality.

What we mean by effectiveness, as well as how we
evaluate it, will vary according to our point of view.
The task specific viewpoint of the user toward the unit
is USER AND TASK (XXIV), that of the unit toward
the user is UNIT, USER AND TASK (XXYV), that
of the unit toward the center is UNIT, CENTER AND
TASK (XXVI), and that of the center toward the unit
is CENTER, UNIT AND TASK (XXVII). USER
GENERAL (XXVIII), UNIT AND USER GEN-
ERAL (XXIX), UNIT AND CENTER GENERAL
(XXX), and CENTER AND UNIT GENERAL
(XXXI) represent general viewpoints of the user for
the unit, the unit for the user, the unit for the center,
and the center for the unit. Finally, the viewpoint of
user management toward the unit constitutes USER
MANAGEMENT (XXXII), that of unit management
toward the user constitutes UNIT MANAGEMENT
AND USER (XXXIII), that of unit management
toward the center constitutes UNIT MANAGEMENT
AND CENTER (XXXIV), and that of center manage-
ment toward the unit constitutes CENTER MAN-
AGEMENT AND UNIT (XXXYV). Internal aspects
of the system are stressed in center viewpoints and
external aspects of the system are stressed in user view-
points, while both internal and external aspects of the
system are stressed in unit viewpoints. Task specific
viewpoints are the easiest to measure objectively,
general viewpoints are more difficult to measure ob-
jectively than task specific viewpoints and less diffi-
cult to measure objectively than management view-

points, and management viewpoints are the most

difficult to measure objectively—the meaningfulness
of these depends, of course, upon point of view.

Evaluation of data processing systems

Figure 2 contains the characteristics of FLOW
(I-IV), EFFECTIVENESS (X-XXI) and VIEW-
POINTS (XXII-XXXIII)—all being surrounded
by an. ECONOMIC AND POLITICAL EN-
VIRONMENT. Since it differs from Figure 1 only in
terms of the basic flow for data and need, a brief
description is now presented.

A USER (I) and his TASK (II) jointly generate

USER PROGRAMMING NEED (III) or USER
PROCESSING NEED (V). To satisfy this need, the
user contacts the SYSTEM PROGRAMMING UNIT
(IV) or SYSTEM PROCESSING CENTER (VI)—
which is also contacted to satisfy USER AND UNIT
PROCESSING NEED (V). PROCESSED DATA
(VII) is then output to the user for performance of his
task. There may also be USER PROGRAMMING
INPUT (VIII) by the user to the unit, or USER AND
UNIT PROCESSING INPUT (IX) by the user and
unit to the center.

Operational characteristics of the unit and center are
grouped under UNIT OUTPUT TIME (X) and
CENTER OUTPUT TIME (XI), UNIT OUTPUT
QUALITY (XII) and CENTER OUTPUT QUALITY
(XIII), and UNIT OUTPUT IMPACT (XIV) and
CENTER OUTPUT IMPACT (XV). There may also
be USER INPUT TIME (XVI) and UNIT INPUT
TIME (XVII), USER INPUT QUALITY (XVIII)
and UNIT INPUT QUALITY (XIX), and USER
INPUT IMPACT (XX) and UNIT INPUT IM-
PACT (XXTI).

Task specific viewpoints are those of USER AND
TASK (XXII), UNIT, USER AND TASK (XXIII),
UNIT, CENTER AND TASK (XXIV), and
CENTER, UNIT AND TASK (XXV). USER GEN-
ERAL (XXVI), UNIT AND USER GENERAL
(XXVII), UNIT AND CENTER GENERAL
(XXVIII), and CENTER AND UNIT GENERAL
(XXIX) represent general viewpoints. Finally, man-
agement viewpoints are given by USER MANAGE-
MENT (XXX), UNIT MANAGEMENT AND
USER (XXXI), UNIT MANAGEMENT AND
CENTER (XXXII), and CENTER MANAGE-
MENT AND UNIT (XXXIII).

Some modification and considerable refinement may
be required to employ one of these structures on an
actual computer system. The structures do, however,
indicate important considerations for evaluating the
effectiveness of a computer system. In addition, they
are considerably more comprehensive than current
structures, and provide a guide toward their own
modification and refinement.

A ctivity involving evaluation

This introduction to compumetrics concludes with
an initial indication of activity involving computer
system effectiveness evaluation prior to 1970, and a
brief description of selected papers which illustrate the
activity. That indication and desecription provide a
context in which to consider the structures given above.

Utilizing the unpublished bibliographies of Bell,!

Measurement of Computer Systems 677

Miller,? and Robinson?® and the author, each processing
its own bias and deficiency, a preliminary characteriza-
tion of effectiveness evaluation activity before 1970
was obtained. Those pioneering papers that appeared
prior to 1963 and treated the general topic were in-
cluded, but those papers that emphasized mathe-
matical modeling or computer simulation—the ma-
jority of which were more concerned with mathematics
than with measurement—were not included.

There were 234 separate references remaining after
duplicate listings within these bibliographies were
eliminated. The number (and approximate percentage)
of documents by year were:

1945—1 (0%)
1948—1 (0%)
1950—1 (0%)
1953—1 (0%)
1960—7 (3%)
1961—6 (29%)
1962—9 (4%)
1963—7 (3%)
1964—14 (6%)
1965—8 (3%)
1966—13 (6%)
1967—23 (10%)
1968—31 (14%)
1969—62 (27%)
1970—50 (22%)

These numbers and percentages are, of course, af-
fected by all pioneering papers having been counted
at the lower end and by some recent papers having
possibly been missed at the upper end. Nevertheless,
they do exhibit a general trend in the variation of
activity over the period. A serious characterization of
such activity awaits the compilation and annotation
of a comprehensive bibliography on measurement of
computer systems—by categories in the structures for
measurement and effectiveness evaluation, as well as
by year.

An elementary structure for evaluation of command
and control system effectiveness—in its external form as
well as its internal form—is provided by Edwards.”
Both Rosin™ and Bryan®™ consider time and quality
characteristics of data processing system performance
for a large variety of users, the former on a batch-
processing system and the latter on a timesharing
system. Five experiments for comparing the per-
formance of a timesharing system with that of a batch-
processing system—Gold,” Sackman, FErikson and
Grant,” Schatzoff, Tsao and Wiig,”® and Smith"—

are summarized by Sackman 8

e All five employ computer time and some measure
of man time.

o All five employ some measure of program quality.

o Gold employs three additional measures of quality,
and Smith employs one additional measure of
quality.

o Gold and Schatzoff, Tsao and Wiig employ a
measure of cost.

o All five employ—in an implicit, rather than ex-
plicit, manner—both system and user viewpoints.

Finally, Shemer and Heying™ include both internal
and external aspects of effectiveness in the design model
for a system, which is to perform timesharing as well
as batchprocessing—and then compare operatlonal
system data with the design model.

ACKNOWLEDGMENTS

The critical review of this paper and constructive sug-
gestions for its improvement by Thomas Bell, Barry
Boehm, Richard Hamming, Robert Patrick, Harold
Petersen and Louis Robinson are gratefullv acknowl-
edged.

REFERENCES

1T E BELL
Computer system performance bibliography
Unpublished

2 E F MILLER JR
Bibliography on techniques of compuler performance analysis
Unpublished

3 L ROBINSON
Bibliography on data processing performance evaluation
Unpublished

4 E H HERBST N METROPOLIS N B WELLS
Analysis of problem codes on the MANIAC
Mathematical Tables and Other Aids to Computation
Vol 9 No 49 1945 pp 14-20

5 C E SHANNON
A mathematical theory of communication
Bell System Technical Journal Vol 27-1948 p 379

6 R W HAMMING
Error detecting and error correcting codes
Bell System Technical Journal Vol 29 1950 p 147

7 H R J GROSCH
High speed arithmetic: The digital computer as a research
tool
Journal of the Optical Society of America Vol 43 No 4
1953 pp 306-310

8 P R BAGLEY ,
Item 2 of two think pieces: Establishing a measure of

678 Fall Joint Computer Conference, 1972

capability of a data processing system
Communications of the ACM Vol 3 No 11960 p 1
9 A J BLACK
SAVDAT: A routine to save input data in simulator tape
Jormat
Report FN-GS-151 System Development Corporation
1960
10 E F CODD
Multiprogram scheduling: Parts I-IV
Communications of the ACM Vol 3 Nos 6 and 7 1960
pp 347-350 and 413-418
11 L FEIN
A figure of merit for evaluating a control computer system
Automatic Control 1960 !
12 T FLORES
Computer time for address calculation sorting
Journal of the Association for Computing Machinery
Vol 7 No 4 1960 pp 389-409
13 M E MARON J L KUHNS
On relevance probabilistic indexing and information retrieval
Journal of the Association for Computing Machinery
Vol 7 No 3 1960 pp 389-409
14 H NAGLER
An estimation of the relative efficiency of two internal sorting
methods
Communiecations of the ACM Vol 3 No 11 1960 pp 618-620
15 R S BARTON
A new approach to the functional design of a digital
computer
Proceedings of 1961 Fall Joint Computer Conference
AFIPS Press 1961 pp 393-396
16 I FLORES
Analysis of internal computer sorting
Journal of the Association for Computing Machinery
Vol 8 No 1 1961 pp 41-80
17 G GORDON
A general purpose systems simulation program
Proceedings of 1961 Spring Joint Computer Conference
AFIPS Press 1961 pp 87-98
18 H M GURK J MINKER
The design and simulation of an information processing
system
Journal of the Association for Computing Machinery
Vol 8 No 2 1961 pp 260-271
19 W A HOSIER
Pitfalls and safeguards in real-time digital systems with
emphasis on programming
IRE Transactions on Engineering Management 1961
20 J JAFFE M I BERKOWITZ
The development and uses of a functional model in the
simulation of an information-processing system
Report SP-584 System Development Corporation 1961
21 C W ADAMS
Grosch’s law repealed
Datamation Vol 8 No 7 1962 pp 38-39
22 F R BALDWIN W B GIBSON C B POLAND
A multiprocessing approach to a large computer system
IBM Systems Journal Vol 1 No 1 1962 pp 64-76
23 O DOPPING
Test problems used for evaluation of computers
BIT Vol 2 No 4 1962 pp 197-202
24 J A GOSDEN R C SISSON
Standardized comparisons of computer performance
Proceedings of 1962 IFIPS Congress 1962 pp 57-61

25 T N HIBBARD
Some combinatorial properties of certain irees with
applications to searching and sorting
Journal of the Association for Computing Machinery Vol
9 No 1 1962 pp 13-28
26 R L PATRICK
Let’s measure our own performance
Datamation Vol 8 No 6 1962
27 R L, SAUDER
A general test data generator for COBOL
Proceedings of 1962 Spring Joint Computer Conference
AFIPS Press 1962 pp 371-324
28 R H SIMONSEN
Simulation of a computer timing device
Communications of the ACM Vol 5 No 7 1962 p 383
29 E C SMITH
A directly coupled multiprocessing system
IBM Systems Journal Vol 2 No 3 1962 pp 218-229
30 M V RATYNSKI
The Air Force computer program acquisition concept
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 33-44
31 L V SEARLE G NEIL
Configuration management of computer programs by the
Air Force: Principles and documentation
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 45-49
32 B H LIEBOWITZ
The technical spectfication—Key to management control of
compuler programming)
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 51-59
33 M S PILIGIAN J C POKORNEY
Air Force concepts for the technical control and design
verification of computer programs
Proceedings of 1967 Spring Joint Computer Conference
AFIPS Press 1967 pp 61-66
34 H SACKMAN
Computers system science and evolving society
John Wiley & Sons Inc 1967
35 Proceedings of SHARE XXTIII
Share Inc 1969
36 Proceedings of SHARE XXXV
Share Inc 1970
37 G HALL Editor
Computer measurement and evaluation: Selected papers
from the SHARE project
SHARE Inc 1972
38 S CROOKE J MINKER
KWIC index and bibliography on computer systems
stmulation and evaluation
Computer Science Center University of Maryland 1969
39 H R MENCK Editor
Bibliography on measurement of computer systems
ACM Los Angeles Chapter Special Interest Committee
on Measurement of Computer Systems Unpublished
40 A F GOODMAN Editor
Computer science and statistics: Fourth annual symposium
on the interface—An interpretative summary
Western Periodicals Company 1971
41 A F GOODMAN
The interface of computer science and statistics
Naval Research Logistics Quarterly Vol 18 No 2 1971
pp 215-229

Measurement of Computer Systems 679

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

M E VAN VALKENBURG et al Editors
Proceedings of fifth annual Princeton conference on
information sciences and systems

Princeton University 1971

U O GAGLIARDI Editor

Workshop on system performance evaluation

ACM Special Interest Group on Operating Systems 1971
Proceedings of 1971 Spring Joint Computer Conference
AFIPS Press 1971

M O LOCKS Editor

Proceedings of computer science and statistics: Fifth annual
symposium on the interface

Western Periodicals Company 1972

Proceedings of 1971 Fall Joint Computer Conference
AFIPS Press 1971

W F FREIBERGER Editor

Statistical computer performance evaluation

Academic Press 1972

J M ADAMS J B JOHNSON R H STARKS
Editors

Proceedings of an ACM conference on proving assertions
about programs

ACM Special Interest Groups on Programming Languages
and on Automata and Computability Theory 1972

F GRUENBERGER Editor

Effective versus effictent computing

Publisher to be selected

M E VAN VALKENBURG et al Editors
Proceedings of sixth annual Princeton conference on
information sciences and systems

Princeton University 1972

Proceedings of 1972 Spring Joint Computer Conference
AFIPS Press 1972

W C HETZEL Editor

Program testing methods

Prentice-Hall Inc 1972

R G CANNING Editor

Savings from performance monitoring

EDP Analyzer Vol 10 No 9 1972

Proceedings of 1972 Fall Joint Computer Conference
AFIPS Press 1972

T E BELLL. B W BOEHM R A WATSON
Framework and initial phases for computer performance
tmprovement

Proceedings of 1972 Fall Joint Computer Conference AFIPS
Press 1972

A F GOODMAN

Data modeling and analysis for users—A guide to the
perplexed

Proceedings of 1972 Fall Joint Computer Conference
AFIPS Press 1972

E R MacLEAN

Assessing returns from the data processing investment
Effective versus Efficient Computing Publisher to be
selected (see 49)

J H WINBROW

A large-scale interactive administrative system

IBM Systems Journal Vol 10 No 4 1971 pp 260-282
Reguirements for AVAILABILITY of computing
facilities

User Strategy Evaluation Committee GUIDE
International Corporation 1970

Libraries and information technology

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Information Systems Panel Computer Science and
Engineering BoardNational Academy of Sciences 1972
I RHODES

The mighty man-computer team

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 1-4

S RAMO

The computer and our changing society

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 5-10

R W GERARD

Computers and education

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 11-16

J V MALONEY JR

Computers: The physical sciences and medicine
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 17-19

C R McBRIER

Impact of computers on retailing

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 21-25

W I MERKIN R J LONG

The application of computers to domestic and international
trade

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 27-31

C R GATES W H PICKERING

The role of computers in space exploration

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 33-35

J A WARD

The impact of computers on the government

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 37-44

P BARAN

Communication computers and people

Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 45-50

K J SCHLAGER

The tmpact of computers on urban transportation
Proceedings of 1965 Fall Joint Computer Conference
Part 2 AFIPS Press 1965 pp 51-55

N P EDWARDS

On the evaluation of the cost-effectiveness of command and
control systems

Proceedings of 1964 Spring Joint Computer Conference
AFIPS Press 1964 pp 211-218

R F ROSIN

Determining a computing center environment
Communications of the ACM Vol 8 No 7 1965 pp 463-468
G E BRYAN

JOSS: 20,000 hours at a console—A statistical evaluation
Proceedings of 1967 Fall Joint Computer Conference
AFIPS Press 1967 pp 769-777

M GOLD

Time-sharing and batch-processing: An experimental
comparison of their values in a problem-solving situation
Communications of the ACM Vol 12 No 5 1969 pp
249-259

H SACKMAN W J ERIKSON E E GRANT
Ezxploratory experimental studies comparing online and
offline programming performance

Communications of the ACM Vol 11 No 1 1968 pp 3-11

680 Fall Joint Computer Conference, 1972

76 M SCHATZOFF R TSAO R WIIG
An experimental comparison of time sharing and baich
processing
Communications of the ACM Vol 10 No 5 1967 pp
261-265

77 L. B SMITH
A comparison of baich processing and instant turnaround
Communications of the ACM Vol 10 No 8 1967
pp 495-500

78 H SACKMAN
Time-sharing versus batch-processing: The experimental
evidence
Proceedings of 1968 Spring Joint Computer Conference
AFIPS Press 1968 pp 1-10

79 J E SHEMER D W HEYING
Performance modeling and empirical measurements in a
system designed for batch and time-sharing users
Proceedings of 1969 Fall Joint Computer Conference
AFIPS Press 1969 pp 17-26

A highly parallel computing system

for information retrieval®

by BEHROOZ PARHAMI

University of California
Los Angeles, California

INTRODUCTION

The tremendous expansion in the volume of recorded
knowledge and the desirability of more sophisticated
retrieval techniques have resulted in a need for auto-
mated information retrieval systems. However, the high
cost, in programming and running time, implied by such
systems has prevented their widespread use. This high
cost stems from a mismatch between the problem to be
solved and the conventional architecture of digital
computers, optimized for performing serial operations on
fixed-size arrays of data.

It is evident that programming and processing costs
can be reduced substantially through the use of
special-purpose computers, . with parallel-processing
capabilities, optimized for non-arithmetic computations.
This is true because the most common and time-con-
suming operations encountered in information retrieval
applications (e.g., searching and sorting) can make
efficient use of parallelism.

In this paper, a special-purpose highly parallel
system is proposed for information retrieval applica-~
tions. The proposed system is called RAPID, Rotating
Associative Processor for Information Dissemination,
since it is similar in function to a conventional byte-
serial associative processor and uses a rotating memory
device. RAPID consists of an array processor used in
conjunction with a head-per-track disk or drum memory
(or any other circulating memory). The array processor
consists of a large number of identical cells controlled by
a central unit and essentially acts as a filter between the
large circulating memory and a central computer. In
other words, the capabilities of the array processor are
used to search and mark the file. The relevant parts of
the file are then selectively processed by the central
computer.

* This research was supported by the U.S. Office of Naval
Research, Mathematical and Information Sciences Division,
Contract No. N00014-69-A-0200-4027, NR 048-129.

681

PARALLELISM AND INFORMATION
RETRIEVAL

Information retrieval may be defined as selective
recall of stored knowledge. Here, we do not consider
information retrieval systems in their full generality but
restrict ourselves to reference and document retrieval
systems. Reference (document) retrieval is defined as
the selection of a set of references (documents) from a
larger collection according to known criteria.

The processing functions required for information
retrieval are performed in three phases:

1. Translating the user query into a set of search
specifications described in machine language.

2. Searching a large data base and selecting records
that satisfy the search criteria.

3. Preparing the output;e.g., formatting the records,
extracting the required information, and so on.

Of these three phases, the second one is by far the most
difficult and time-consuming; the first one is straight-
forward and the third one is done only for a small set of
records.

The search phase is time-consuming mainly because
of the large volumes of information involved since the
processing functions performed are very simple. This
suggests that the-search time may be reduced by using
array processors. Array processing is particularly
attractive since the search operations can be performed
as sequences of very simple primitive operations. Hence,
the structure of each processing cell can be made very
simple which in turn makes large arrays of cells
economically feasible.

Associative memories and processors constitute a
special class of array processors, with a large number of
small processing elements; which can perform simple
pattern matching operations. Because of these desirable
characteristics, several proposals have been made for

682 Fall Joint Computer Conference, 1972

using associative devices in information retrieval
applications.

Before proceeding to review several attempts in this
direction, it is appropriate to summarize some properties
of an ideal information retrieval system to provide a
basis for evaluating different proposals.

P1. Storage medium: Large-capacity storage is used
which has modular growth and low cost per bit.

P2. Record format: Variable-length records are
allowed for flexibility and storage efficiency.

P3. Search speed: Fast access to a record is possible.
The whole data base can be searched in a short
time.

P4. Search types: Equal-to, greater-than, less-than,
and other common search modes are permitted.

P5. Logical search: Combination of search results is
possible; e.g., Boolean and threshold functions of
simple search results.

Some proposals'—* consider using conventional associ-
ative memories with fixed word-lengths and, hence, do
not satisfy P2. While these proposals may be adequate
for small special-purpose systems, they provide no
acceptable solution for large .information retrieval
systems. With the present technology, it is obviously not
practical to have a large enough associative memory
which can store all of the desired information.2 without
violating P1. Using small associative memories in
conjunction with secondary storage? results in consider-
able amounts of time spent for loading and unloading
the associative memory, violating P3.

Somewhat more flexible systems can be obtained by
using better data organizations. In the distributed-logic
memory,*® data is organized as a single string of symbols
divided into substrings of arbitrary lengths by de-
limiters. Each symbol and its associated control bits are
stored in, and processed by, a cell which can communi-
cate with its two neighbors and with a central control
unit. In the association-storing processor,® the basic
unit of data is a triple consisting of an ordered pair of
items (each of which may be an elementary item or a
triple) and a link which specifies the association between
the items. Very complex data structures can be repre-
sented conveniently with this method. Even though
these two systems provide flexible record formats, they
do not satisfy P1.

It is evident that with the present technology, an
information retrieval system which satisfies both P1 and
P3 is impractical. Hence, trading speed for cost through
the use of circulating memory devices seems to provide
the only acceptable solution. Delay-line associative
devices that have been proposed”.® are not suitable for
large information retrieval systems because of their fixed

word-lengths and small capacities. The use of head-per-
track disk or drum memories as the storage medium
appears to be very promising because such devices
provide a balanced compromise between P1 and P3. An
early proposal of this type is the associative file pro-
cessor? which is a highly specialized system. Slotnick?
points out, in more general terms, the usefulness of
logic-per-track devices. Parker!' specializes Slotnick’s
ideas and proposes a logic-per-track system for informa-
tion retrieval applications.

DESIGN PHILOSOPHY OF RAPID

The design of RAPID was motivated by the distrib-
uted-logic memory of Lee*® and the logic-per-track
device of Slotnick.® RAPID provides certain basic
pattern matching capabilities which can be combined to
obtain more complicated ones. Strings, which are stored
on a rotating memory, are read into the cell storage one
symbol at a time, processed, and stored back (Figure 1).
Processing strings one symbol at a time allows efficient
handling of variable-length records and reduces the
required hardware for the cells.

Figure 2 shows the organization of data on the
rotating memory. Each record is a string of symbols
from an alphabet X, which will not be specified here. It
is assumed that members of X are represented by binary
vectors of length N. Obviously, each symbol must have
some control storage associated with it to store the
search results temporarily. One control bit has proven to
be sufficient for most applications even though some

CHARACTERS
HEAD-PER-TRACK X NN\ \\§
DISK

O CELLS

CONTROL UNIT

l T TO AND FROM
OTHER SYSTEMS

Figure 1—Overall organization of RAPID

Parallel Computing System for Information Retrieval 683

ROTATION

ONE

CHARACTER ‘
ONE
(N+1) BITS/ O
" ?VE:I?I?\[;LE
LENGTH}

HEAD-PER-TRACK
DISK

O
f

‘.
‘.
\.

EMPTY ZONE
TO ALLOW SUFFICIENT
TIME FOR PREPARING THE
NEXT INSTRUCTION

{OF THE ORDER OF 1us)

START SEARCH

STATE SYMBOL (N BITS)

e o o o o

ONE CHARACTER

Figure 2—Storage of characters and records

operations may be performed faster with a larger control
field. Control information for a symbol will be called its
state, ¢€ {0, 1}. A symbol z and its state ¢ constitute a
character, (¢,).

One of the members of X is a don’t-care symbol, 8,
which satisfies any search criterion. As an example for
the utility of 8, consider an author whose middle name
is not known or who does not have one. Then, one can
use & as his middle initial in order to make the author
field uniform for all records. We will use the encoding
11...1 for é in our implementation. In practice, it will
become necessary to have other special symbols to
delimit records, fields, and so on. The choice of such
symbols does not affect the design and is left to the
user. It should be emphasized, at this point, that
RAPID by itself is only capable of simple pattern
matching operations. Appropriate record formats are
needed in order to make it useful for a particular
information retrieval application. One such format will
be given in this paper for general-purpose information
retrieval applications.

The idea of associating a state with each symbol is
taken from Lee’s distributed-logic memory.45 In fact,

RAPID is very similar to the distributed-logic memory
in principle but differs from it in the following:

1. Only one-way communication exists between
neighboring characters in RAPID. This is
necessitated because of the use of a cyclic
memory but results in little loss in power or
flexibility.

2. The use of a cheaper and slower memory makes
RAPID more economical but increases the
search cycle from microseconds to miliseconds.

3. Besides match for equality, other types of
comparisons such as less-than and greater-than
are mechanized in RAPID.

4. Basic arithmetic capability is provided in
RAPID. It allows for threshold combinations of
search functions as well as conventional Boolean
combinations.

With the above data organization, the problem of
searching for particular sets of records will reduce to

. that of locating substrings which satisfy certain criteria.

Search for successive symbols of a string is performed
one symbol per disk or drum revolution. There are at
least two reasons for this design choice:

1. At any time, all the cells will be performing
identical functions (looking for the same symbol).
This reduces the hardware complexity of each
cell since the amount of local control is minimized
and fewer input and output leads are required.

2. The alternative approach of processing a few
symbols at a time fails in the case of overlapping
strings. Suppose one tries to process k& symbols at
a time (k > 1) by providing local control for each
cell in the form of a counter. Then, if the +-th
symbol in the input string is matched, the cell
proceeds to mateh the (7 + 1)-st symbol. Hence,
if one is looking for the pattern ABCA in the
string . . . DCABCABCADA. . ., ounly one of the
two patterns will be found. Also, the pattern
BCAD will not be found in the above example.

THE CONTROL UNIT

Figure 3 shows a block diagram of RAPID which is a
synchronous system operating on the disk clock tracks.
The phase signal generator sequences the operations by
generating eight phase signals. PHA, PHB, PHC, and
PHZ are generated once every disk revolution while
PH1, PH2, PH3, and PH4 are generated once every bit
time (Figure 4). During PHA, the cell control register
(CCR), imput symbol register (ISR), and address

684 Fall Joint Computer Conference, 1972
holds the instruction to be executed for one disk
revolution. The function of wvarious fields in this
onE LiNE register will now be described.
PER CELL MULTIPLE
—~ RESPONSE
N+2 ~ ¥ RESOLVER
'l;lsr:«scszzu MRR) Read ﬁeld
HEAD-PER -TRACK »
o on N+t ceLLs LAS PHC This field consists of two bits, RST and RSY. RST

LINES
PER CELL

DRUM

2|

ONE LINE
|12 LINES

5 LINES

PER CELL

z
c
H
3
2
X

o

= =
(.4 o«
% 38 -1 g2
] : e ok -4 ush
5z |18 52 3 as8l 588l EZ2 gug
@« Q ® T P a =]
g2 |° 8% 2| g8 &iE adf EEY
= =
PH1 2 2
o1 « 2
PHASE | PH2 -]
SIGNAL = s -
GENERATOR | PH3_ G § I
(PSG) paa S & & i
< < @ saz
I z z SELECTED
& ADDRESS
1S ZERO
< @ O N
Tt
PHB
63
CONTROL UNIT
PHa

Figure 3—Block diagram of RAPID

selection register (ASR) are cleared. During PHB and
PHC, these registers are loaded. Then the execution of
the instruction in CCR starts. During PH3, the output
character register is reset. It is loaded during PH4 and is
unloaded, through G4, after a certain delay.

Most parts of the control unit, namely the instruction
sequencing section and the auxiliary registers which are
used to load CCR, ISR, and ASR or unload OCR, are
not shown in Figure 3. It should be noted, however, that
these parts process instructions at the same time that
the cells are performing their functions such that the
next instruction and its associated data are ready before
the next PHB signal. The system can also be controlled
by a general-purpose computer which is interrupted
during PHB to load the auxiliary registers with the next
instruction and associated data.

The arrangement of records on disk is shown in
Figure 2. The N+1 bits of a character are stored on
parallel traeks while the characters of a record are
stored serially. One or more clock tracks supply the
timing pulses for the system. The empty zone is
provided to allow sufficient time for loading the control
registers for the next search cycle.

Figure 5 shows the cell control register (CCR) which

commands the cells to read the state bit into the
current state flip-flop, CSF. RSY commands the cells
to read the symbol bits into the current symbol
register, CSR.

Write field

This is similar to the read field and consists of WST
and WSY. WST commands that the condition bit, CON
(see description of condition field), replace the current
state. WSY is a command to replace the current symbol
by the contents of current symbol register, CSR,
if CON=1.

Address selection field

This field contains two bits, LAS and RAS. If the
LAS bit of this field is set, the address selection register

ONE DISK OR
} DRUM

REVOLUTION

ONE BIT
TIME

l_'] PHC

|
[
"
r

L.
L...

Figure 4—Timing signals

Paralle] Computing System for Information Retrieval 685

(ASR) is loaded from the multiple response resolver
(MRR). MRR outputs the address of the first cell with
its ASF on. If the RAS bit is set, the accumulated state
flip-flop, ASF, in the cells will be reset. The function of
ASF will be described with the cell design. The address
selection field allows the sequential readout of the tracks
which contain information pertinent to a search request.

(.
2 READ STATE
o2 -
m <
oo o
% READ SYMBOL
;
2 WRITE STATE
oS -
R
Om
S WRITE SYMBOL
<
\
F
-
o LOAD ASR
RBs (| &
CRER
- m
4 2 RESET ASF
2 7]
\
r r
2 MATCH STATE TO 1
£3 -
A
o
T 2 MATCH STATE TO ZERO
N
=
g
e J e GREATER THAN
- -]
m
o |22
> 2 W & LESS THAN
om® -
£o
e
P EQUALTO
-
\ \
>
5 LOGICAL FUNCTION
"
3 SELECT CSF
Q »
9 Q
g o]
S| 3
3d Z o SELECT ASF
2 - «
mn
- 3<
o] B 8 SELECT CMF
-~ 2 - -
a
=
o
z 2 SELECT PMF
2
\. .

Figure 5—The cell control register (CCR)

TABLE I—The Match Condition
for the State Part of a Character

MS1 MSZ Match
0 0 never
0 1 ifg=0
1 0 ifg=1
1 1 always

Maich field

This field consists of two subfields; the state match
subfield, and the symbol match subfield. These subfields
specify the conditions that the state and symbol of a
character must meet. If both conditions are satisfied for
a particular character, the current match {flip-flop
(CMF) of the corresponding cell is set. The state match
subfield consists of MS1 and MSZ. The conditions for
all combinations of these two bits are given in Table I.
The symbol match subfield consists of three bits; GRT,
LET, and EQT. All the symbols in the cells are simul-
taneously compared to the 1’s complement of the
contents of ISR. Table II gives the conditions for all
combinations of the three signals. S is the symbol in a
cell and ¥ is the 1’s complement of the contents of ISR.

Condition field

This field specifies how the condition bit, CON, is to
be computed from the contents of the following four
flip-flops in a cell: current state flip-flop, CSF; accumu-
lated state flip-flop, ASF; current match flip-flop, CMY;
and previous match flip-flop, PMF. LOF specifies the
logical funetion to be performed (AND if LOF=1, OR
if LOF=0). The other four bits in this field specify a
subset W of the set of four control flip-flops on which the
logical function is to be performed. For example, if
SC8=1, then CSF € W.

TABLE II—The Match Condition for the
Symbol Part of a Character

GRT LET EQT Match

never
fS=YorS=3s
fS<YorS=3
ifS<YorS =3
fS>YorS =35
fS>YorS =35
ifS#YorS =35
always

ot ek et e OO OO
ek OO e e OO
bt O et Ok O = O

686 Fall Joint Computer Conference, 1972

TO ﬁ; .. TO A
MULTIPLE PROCESSING
RESPONSE| SECTION
CURRENT RESOLVER
STATE _:D—
FLIP-FLOP PH2
FROM s , —D—> s 1 N LOF
pisKk ————>
ASF
CSF ADS)\ SAS Q:DT
PHa—»| R (] PH"’-—-"_'D ol R 0 SPM —
RAS _—_DJ ACCUMULATED
PHZ STATE
MS1 FLIP-FLOP ﬂD— z
B (5]
STATE / PH4 :D_ N
MATCH MsZ { ;
STM _:D_ =]
':
CURRENT PREVIOUS SCS g
MATCH TAJ»C? oP 8 5
" _FLIP-FLOP PHA LIP-FL! LOE *g
SAS a
— K
PH3-5 > s 1 s }.ﬁ}_ o
CMF PMF SPM -
PH4
PH2—1 R 0 —% R Y ADS
FROM scm
PROCESSING —:-D_
SECTION SYM wsY WRITE
N\ PH4 SIGNAL
T0
SYMBOL
TRACKS

Figure 6—Control section of a cell

As will be seen later, the cell design is such that by
appropriate combinations of bits in CCR, other func-
tions besides simple comparison can be performed.

THE CELL DESIGN

Each cell consists of two sections; the control section,
and the processing section. Roughly speaking, the
control section processes the state part of a character
while the processing section operates on the symbol part.

The control section (Figure 6) contains four flip-flops:
current state flip-flop, CSF; accumulated state flip-flop,
ASF; current match flip-flop, CMF; and previous match
flip-flop, PMF. CSF contains the state of the character
read most recently from the disk. ASF contains the
logical OR of the states of characters read since it was
reset. This flip-flop serves two purposes: finding out
which tracks contain at least one character with a set
state (reset by ADS during PHZ) and propagating the
state information until a specified character is en-
countered (reset by RAS during PHZ and by CMF
during PH4). CMF contains (after PH3) the result of
current match. It is set if both the state and symbol of
the current character meet the match specifications.

Finally, PMF contains the match result for the previous
character.

The condition signal, CON, is a logical function of the
contents of control flip-flops. The four signals SCS, SAS,
SCM, and SPM select a subset of these flip-flops and
the logical function signal, LOF, indicates whether the
contents of selected flip-flops should be ANDed
(LOF=1) or ORed (LOF=0) together to form CON.
The value of CON will replace the state of current
character if the write state signal, WST, is activated.

The address selection signal, ADS, is activated by the
address selection decoder. This signal allows conven-
tional read and write operations to be performed on
selected tracks of the disk. It is also possible, through
the multiple response resolver, to read out sequentially
the contents of tracks whose corresponding ASF’s are
set.

The processing section, shown in Figure 7, contains an
N-bit adder with inputs from ISR and the current
symbol register, CSR. During PH1, a symbol is read
into CSR. During PH2, contents of CSR are added to
contents of ISR with the result stored back in CSR.
Overflow indication is stored in the overflow flip-flop,
OFF. Before the addition takes place, the don’t-care

Parallel Computing System for Information Retrieval 687

flip-flop, DCEF, is set if CSR contains the special don’t-
care symbol §. From the results of addition, it is decided
whether the symbol satisfies the search specification
(SYM =1 if it does, SYM =0 if it does not).

The adder in each cell allows us to add the contents of
ISR to the current symbol or to compare the symbol to
the 1’s complement of the contents of ISR. If we denote
the current symbol by S, the contents of ISR by ¥, and
its I’s complement by ¥, then:

S=Yiff S+Y+1=2V
S>Y iff S+Y+1>2V
S<Y iff S+Y+1<2V
N is the length of the binary vector representation of

S and Y. Hence if we denote the result of addition in
CSR by Z and the overflow by OFF, we have:

Note that the carry signal into the adder is activated
if any one of the signals GRT, LET, or EQT is active.
The above equations are used in the design of the
circuit which computes the symbol match result, SYM
(upper right corner of Figure 7). The result of symbol
match is ANDed with the result of state match (STM)
during PH3 to set the current match flip-flop.

Finally, during PH4, the contents of CSR can be
written onto the disk or put on the output bus. Since the
address selection line, ADS, is active for at most one
cell, no conflict on the output bus will arise.

EXAMPLES OF APPLICATIONS

We first give a set of 12 instructions for RAPID.
These instructions perform tasks that have been found

S=Yiff Z=0 to be useful in information retrieval applications. Each
= . instruction, when executed by RAPID, will load CCR
S>Y iff Z##0 and OFF =1 .
with a sequence of patterns. These sequences of patterns
S<Y iff OFF=0 are also given. We restrict our attention to search
OVERFLOW SYMBOL A °
FLIP-FLOP MATCH T E
PH2 GRT sYM z 5
— ey I e -
ore | [: 2
CARRY Jout LET
FRoM > PH1— R 0
—> CARRY IN
INPUT . ADDER < =
BUS : ‘ g
(1SR) PHZ s 1 D
b 400 DCF car—
. LET Ear »
: —» R 0 eoT—t/
) PH1
PH2 %——» \
f. v s 1 X L 2 >\
DON'T CARE
PH2 FLIP-FLOP ¢\
R 0 1EX
) PH4
PH2..:D—h_. R ; R ol
FROM J e @
. e 0O
DISK PH2 R 0 . p E
* PH4 *
. L] °
. ° * . Y
L *
° | . ° L4]
L]
L PH2 » s 1 L 2 >)
PH2 R 0 P
PHa ADS -
CURRENT PH4 ::I)*
SYMBOL | CSR
REGISTER mT)
c

ON e
TO OUTPUT
FROM BUS
CONTROL
SECTION

Figure 7—Processing section of a cell

688

Fall Joint Computer Conference, 1972

instructions only. Input and output instructions must
also be provided to complete the set.

1.

2.

search and set s: Find all occurrences of the

symbol s and set their states.

search for $;5; . . . s,: Find all the occurrences of

the string s;s; ... s, and set the state of the

symbols which immediately follow s,.

. search for marked s;s, ... s,: Same as the
previous instruction except that for a string to
qualify, the state of its first symbol must be set.

. search for marked ¢ s: Search for symbols

whose states are set and have the relation y with

s. Then, set the state of the following symbol.

Possible relations are <, <, >, >, and #.

propagate to s: If the state of a symbol is set,

reset it and set the state of the first s following it.
propagate i: If the state of a symbol is set,

10.

11.

12,

reset it and set the state of the -th symbol to its
right.

. expand to s: If the state of a symbol is set, set
the state of all symbols following it up to and
including the first oecurrence of s.

. expand ¢: If the state of a symbol is set, set the
state of the first ¢ symbols following it.

. contract ¢: If the state of a symbol is reset,

reset the state of the first ¢ symbols following it.

expand ¢ or to s: If the state of a symbol is set,

perform 7 if an s appears within the next 7

symbols; otherwise, perform 8.

add s: Add the numerical value of s to the

numerical value of any symbol whose state is set.

replace by s: If the state of a symbol is set,
replace the symbol by s. ‘

The microprograms for these instructions are given

TABLE ITI—Microprograms for RAPID Instructions

Contents of CCR

§ 2 | pead Write | Address Match Field Condition Field

. E E: Field Field [Selection State Symbot Logic| FF Selection
3 TR RIS TER s TR T
= T 1Y T 1Y S IS 1 1z T TIT F S |S M 1M
1 |search and set s 1 5 11100 1 {1 |o 0o ofjof1}o
1 §1 1 140 0 1 |1 0 0 00 0|1

? [Resre o #1%- -5y j2ton [5, |11 |1]o] 0 1o o | ol o o] o]
3|search for marked s;s,...s, |j=1 ton §j 171 1160] 110 |0 0|1 010 [
< 1 5 11 1190 0 110 |0 110 0|0 0 {1

< 1 s 111 110 0 1 10 0 1] 0|0 0 {1

4 |search for marked ys > ! s A 1o o 110 1 0jo ojojoqn
2 1 s 1)1 110 0 1 |0 1 01 0|0 0 {1

= 1 s 1 {1 110 0 1 o 1 110 0 3]0 0 |1
5 |propagate_to s 1 H 1 {1 110} 0 |1 1N i] o 1 0o |1 110
6 ‘progagate i i 1 110 0 1 }0 1 11 0 {0 011
7 Jexpand tos 1 s 1 |1 110 0 ; 1 11N 0 oNn 0 i1 00
8 lexpand 1 1 1 1[o] o B EEERERERE
9 jcontract i i 1 10} 0 1 |0 1 IRA 1 11010 (1
5 111 110 0 1 N 1 1j0 1 110 110

10 expand 1 or.te ¢ i 1 110 0 1]0 1 IR 0 110 0 {1
11 add s ~ 1 s 111 1 0 110]07]0
12 ireplace by s 1 s 110 1 0 11]0 01}o

Parallel Computing System for Information Retrieval 689

ONE RECORD

—
7

] | [|-
55

| L

]

RECORD INFORMATION SEARCH
LENGTH FIELDS RESULTS
FIELD
RECORD! RECORD
END TYPE FLAG =
SYMBOL € EMPTY
¥ NON-EMPTY
ONE INFORMATION FIELD
FIELD FIELD
NAME INFORMATION
SEPARATOR FIELD —
SYMBOL END

SYMBOL

Figure 8—Data storage format

in Table III. A blank entry in this table constitutes a
don’t-care condition. The entries in the repetition
column specify the number of times the given patterns
should be repeated. As can be seen from Table III, this
set of instructions does not exploit all the capabilities of
RAPID since some of the bits in the CCR assume only
one value (0 or 1) for all the instructions.

To illustrate the applications of RAPID, we first
choose a format for the records (Figure 8). The record
lIength field must have a fixed length in order to allow
symbol by symbol comparison of the record length to a
given number. The information fields can be of arbitrary
lengths. The flag field contains three charaeters; two for
holding the results of searches, and one which contains
a record type flag. The Greek letters used on Figure 8
are reserved symbols and should not be used except for
the purposes given in Table IV,

As mentioned earlier, a special symbol, §, is used as a
don’t-care symbol. It is also helpful to have a reserved
symbol, =, which can be used as temporary substitute
for other symbols during a search operation. Let us now
consider two simple examples to show the utility of the
given instruction set.

Ezample 1. Assuming that the record length is
specified by one symbol, the following program marks
all the empty records whose lengths are not less than s.
This is useful when entering a new record of length s to
find which tracks contain empty records that are large
enough.

search for \

search for marked > s
propagate to p
propagate 3

search for marked

If the record length is specified by two characters, we
note that #i,> 88, iff £,>s; or ti=s and {,>s,. Hence,
we write the following program:

search for \

search for marked > s;
propagate 1

replace by 7

search for \

search for marked s;
search for marked > s,
replace by 7

search and set 7
replace by ¢

propagate to p
propagate 3

search for marked ¢

Ezample 2. The following program marks all non-
empty records which contain in their title field,
designated by TI, a word having “magnet” as its first
six characters and having 3 to 10 non-blank characters
after that. 8 designates the “blank’ character. ‘

search for ¢TIs

expand to ¢

search for marked magnet
expand 10 or to 8
contract 3

propagate to p

propagate 3

search for marked »

It is important to note that the record format given
here serves only as illustration. Because of its generality
and flexibility, this format is not very efficient in terms
of storage overhead and processing speed. For any given
application, one can probably design a format which is
more efficient for the types of queries involved.

CONCLUSION

In this paper, we have described a special-purpose
highly parallel system for information retrieval applica-

TABLE IV—List of Reserved Symbols

Indicates start of length field.

Indicates end of a record.

Separates name and information subfields in a field.
Indicates end of a field.

Designates the end of an empty record.

Designates the end of a non-empty record.

Is the don’t-care symbol.

Is used as temporary substitute for other symbols.

8 ¥ a8 QB ¥

690 Fall Joint Computer Conference, 1972

tions. This system must be evaluated with respect to the
properties of an ideal information retrieval system
summarized earlier. It is apparent that RAPID satisfies
P2, P4 and P5. The extent to which P1 and P3 are
satisfied by RAPID is difficult to estimate at the
present.

With respect to P1, the storage medium used has a low
cost per bit. However, the cost for cells must also be
considered. Because of the large number of identical
cells required, economical implementation with LSI is
possible. Figures 6 and 7 show that each cell has one
N-bit adder, N +6 flip-flops, 6N 439 gates, and 4N +23
input and output pins. For a symbol length of N =8
bits, each cell will require no more than 250 gates and 60
input and output pins. The number of input and output
pins can be reduced considerably at the expense of more
sophisticated gating circuits (i.e., sharing input and
output connections).

With respect to P3, the search speed depends on the
number of symbols matched. If we assume that on the
average 50 symbols are matched, the matching phase
will take about 70 disk revolutions (to allow for
overhead such as propagation of state information and
performance of logical operations on the search results).
Hence, the search time for marking the tracks which
contain relevant information is of the order of a few
seconds.

Some important considerations such as input and
output of data and fault-tolerance in RAPID have not
been explored in detail and constitute possible areas for
future research. The interested reader may consult
Reference 12 for some thoughts on these topics.

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance and
encouragement given by Dr. W. W. Chu in the course
of this study. Thanks are also due to Messrs. P. Chang,
D. Patterson, and R. Weeks for stimulating discus-
sions.

REFERENCES

1 J GOLDBERG M W GREEN
Large files for information retrieval based on simultaneous
interrogation of all items ‘
Large-capacity Memory Techniques for Computing Systems
New York Macmillan pp 63-67 1962
28 S YAU C C YANG
A cryogenic assoctative memory system for information
retrieval
Proceedings of the National Electronics Conference pp
764-769 October 1966
3 J A DUGAN R S GREEN J MINKER
W E SHINDLE
A study of the utility of associative memory processors
Proceedings of the ACM National Conference pp 347-360
August 1966
4 CY LEE
Intercommunicating cells, basis for a distributed-logic computer
Proceedings of the FJCC pp 130-136 1962
5CY LEE M C PAULL
A content-addressable distributed-logic memory with
applications to information retrieval
Proceedings of the IEEE Vol 51 pp 924-932 June 1963
6 D A SAVITT H H LOVE 'R E TROOP
ASP; a new concept in language and machine organization
Proceedings of the SJCC pp 87-102 1967
7 W A CROFUT M R SOTTILE
Design techniques of a delay line content-addressed memory
IEEE Transactions on Electronic Computers Vol EC-15
pp 529-534 August 1966
8 P T RUX
A glass delay line content-addressable memory system
IEEE Transactions on Computers Vol C-18 pp 512-520
June 1969
9 R H FULLER R M BIRD R M WORTHY
Study of associative processing techniques
Defense Documentation Center AD-621516 August 1965
10 D L. SLOTNICK
Logic per track devices
Advances in Computers Vol 10 pp 291—296 New York
Academic Press 1970
11 J L. PARKER
A logic-per-track retrieval system
" Proceedings of the IFIPS Conference pp TA-4-146 to
TA-4-150 1971
12 B PARHAMI
RAPID; a rotating associative processor for information
dissemination
Technical Report UCLA-ENG-7213 University of Cali-
fornia at Los Angeles February 1972

The architecture of a context addressed

segment-sequential storage

by LEONARD D. HEALY

U.8. Naval Training Equipment Center
Orlando, Florida

and

GERALD J. LIPOVSKI and KEITH L. DOTY

University of Florida
Gainesville, Florida

INTRODUCTION

This paper presents a new approach to the problem of
searching large data bases. It describes an architecture
in which a cellular structure is adapted to the use of
sequential-access bulk storage. This organization com-
bines most of the advantages of a distributed processor
with that of inexpensive bulk storage.

Large data bases are required in information re-
trieval, artificial intelligence, management information
systems, military and corporate logistics, medical diag-
nosis, government offices and software systems for
monitoring and analyzing weather, ecological and social
problems. In fact, most nonnumerical processing re-
quires the manipulation of sizable data bases. An ex-
amination of memory costs indicates that at present the
best way of storing such data bases, and the one most
widely used in new computer systems, is disec storage.
However, the disc is not used anywhere near its full
potential.

Discs are presently used as random access storages.
Each word has an address which is used to select the
word. However, the association of each word with a
fixed location, required in a random access storage, is a
disadvantage. In a fixed-head disc, each word is read by
means of a read head and can be over-written by a
write head. Now, if we discard the capability to ran-
domly address, associative addressing can be used as
words are read, and automatic garbage collection can be
performed as words are rewritten.

Perhaps the most important feature of this archi-

691

tecture is its associative (or context) addressing capa-
bility. Search instructions are used to mark words in
storage that match the specified criteria. Context ad-
dressing is achieved by making the search criteria de-
pend upon both the content of the word being searched
and the result of previous searches. For example, con-
sider the search of a telephone directory in which each
entry consists of three separate, contiguously placed
words: subscriber name, subscriber address, and tele-
phone number. The search for all subscribers named
John J. Smith is a content search—a search based upon
the content of a single word. The search for all sub-
seribers named Smith who live on Elm Street is a con-
text search—the result of the search for one word af-
fects the search for another.

Associative addressing, or more correctly, content
addressing, has been attempted on discs! in which each
word in the memory is a completely separate entity in
such an addressing scheme. This paper shows how con-
text addressing can be done. Words nearby a word in the -
storage can be searched in context, such that a successful
search for one word can be made dependent on a history
of successful searches on the nearby words. Strings, sets,
and trees can be stored and searched in context using
such a context-addressed storage.? More complex struc-
tures such as relational graphs can also be efficiently
searched. ,

The context-addressed disc has the following ad-
vantage over a random-accessed disc in most non-
numeric data processes. Large data bases can be
searched, for instance, for a given string of characters.
Once a string is found, data stored nearby the string on

]

692 Fall Joint Computer Conference, 1972

the disc track can be returned to the central processor.
Only relevant data need be returned, because the ir-
relevant data can be screened out by context-addressed
searching on the disc itself to select the relevant data.
In contrast, a conventional dise will return consider-
able irrelevant data to the central processor to be
searched. Thus, the I/O channel requirements and pri-
mary storage requirements of the computer are reduced
because less data is transferred. In fact, there is a maxi-
mum number of random-accessed discs that can be
serviced by a central processor because it has to search
through all the irrelevant data returned by all the discs,
whereas an unlimited number of context-addressed
discs can be searched in parallel. Moreover, the instruc-
tions used to search the disc storage can be stored in the
disc storage itself. Thus, the central processor can trans-
fer a search program to the disc system, then run inde-
pendently until the dise has found the data. The com-
puter would be interrupted when the data was found.
This will reduce the interrupt load on the computer.
In this paper we therefore study the implementation
of a context-addressed storage using a large number of

I
B\
B @)
4 = BN
pZh = IEm
BB

J

)

SEGMENTS

NERSA
]
&

[s] - e 7

SOFTWARE MAKEUP HARDWARE PLACEMENT

o0 " 8¢ 0

i

FILE

Figure 1—Storage of records as segments

discs. The segment-sequential storage to be studied will
have the following characteristics (see Figure 1). The
entire storage will store a 1-dimensional array of words,
called the file. From the software viewpoint, collections
of words related in a data structure format are stored
in a contiguous section of the file, called a record.

‘Records can be of mixed size. From the hardware view-

point, the file will be broken into equal-length segments
and stored on fixed-head discs, one segment to a dise.
In the time taken to rotate one disc completely, all
discs can search simultaneously for a given word in the
context of a data structure as directed by the user’s
query, marking all words satisfying the search. Words
selected by such context searches can be over-written
with new data in such a data structure, erased, read
out to the I/0 channel, or selected as instructions to be
executed during the next disc rotation. Data in groups
of words can be copied and moved from one part of the
file to another part as the data structure is edited. In
the meantime, a hardware garbage collection algorithm
will collect erased words to the bottom of the file so that
large aggregates of words are available to receive large
records.

MOTIVATION

The problem that leads to the system architecture
proposed here is the efficient use of storage devices
equivalent to large disc storages. Access to files stored
on such devices is currently based upon a sequential
search of the file area by reading blocks of data into the
main storage of the central processor and searching it
there or by use of a file index which somehow relates
the file content to its physical location. Many hierarchies
of searches have been devised—all efforts to solve
the basic problem that the storage device is addressed
by location but the data is addressed by its content.

The advantage of information retrieval based upon
content is well documented.®*5 However, the trend has
been toward application of associative-search hardware
within the central computer. Content-search storages
have been implemented as subsystems within a com-
puter system;%” but even in these cases, the use of the
search subsystem has been closely associated with opera-
tions in the central processor. The devices fit into the
storage hierarchy between the central processor and the
main core storage. A typical application of a content-
addressed storage is as a cross-reference to information
in main storage—the cache storage. An associative
storage subsystem specifically designed for the process-
ing useful in software applications has been proposed,®
but even that is limited in size by the cost of the special
storage hardware.

Systems of the type mentioned are small, high-speed

Architecture of Context Addressed Segment-Sequential Storage 693

units. They are limited to content search and are
restricted in size relative to bulk storage devices. Their
application to searching of large data bases is limited
to general improvement of central processor efficiency
or to searching the index for a large data base. What is
needed for true context search of a large data base is an
economic subsystem which can be connected to a com-
puter and can perform context search and retrieval
operations on a large data base stored within that sub-
system.

The approach described in this paper provides just
such a subsystem. It is a semi-autonomous external
device which has its own storage and control logic.
The design concept is specifically oriented toward use
of a large bulk storage medium instead of high-speed
core storage. In addition, the processing capability of
the subsystem has been expanded to include not only
- list processing, but also special searches such as match-
ing data strings against templates and operations on bit
strings to simulate networks of linear threshold ele-
ments useful in pattern recognition.

The basic building block of the proposed architecture
is a segmented sequential storage. The sequential stor-
age was chosen because it provides an economically
feasible way to store a large data base. In order to
perform search operations on this data base, the storage
must be divided into segments which can be searched in
parallel. Each segment of the sequential storage must
have its own processing capability for conducting such a
search. This leads to a cellular organization in which
each cell consists of a sequential storage segment.

The segment-sequential storage has the following
property. Suppose n items are compared with each other
exhaustively. This requires n storage words. Thus, the
total size of the storage obviously grows linearly with n.
However, as the size grows, more discs are added on, but
the time for a search depends only on the size of the
largest disc and not on the number of discs. Thus, the
time to search for each item in a query is still the same.
The total time for the search grows linearly with the
number of words to be compared. As a first approxima-
tion to the cost of programming, the product of storage
size and search time grows as n% This compares with n?
for a conventional computer. Thus, this storage is very
useful for those operations in which all the elements in
one set are exhaustively compared with each other or
with members of another set, especially when the set is
very large. Similarly, the cost of a comparison of one
element with a set of n elements grows as n? in a con-
ventional processor, and as n in this architecture. The
rate of growth of the cost of programming for this
architecture is the same as for cellular associative
memories,? primarily because it too is a parallel cellular
system.

Some algorithms demand exhaustive comparisons.
Some of these are not used because of their extreme cost.
Other algorithms abandon exhaustive comparison to be
usable in the Von Neumann computer at some increase
in programming complexity, loss of relevance or ac-
curacy, or at the expense of structuring the data base
so. that other types of searches cannot be efficiently
conducted. In view of the lower cost of an exhaustive
search, this storage might be useful for a number of
algorithms which are now used for information manage-
ment in the Von Neumann computer and many others
which are not practical on that type of machine.

Discs appear to be slow, but their effective rate of
operation can be made very fast when they are used in
parallel. A typical disc rotates at sixty revolutions per
second. The segment-sequential storage will be able to
execute sixty instructions per second. (Faster rates
may eventually be possible with special discs, or on
processors built from magnetic bubble memories, semi-
conductor shift registers, or similar sequential mem-
ories.) However, if one hundred fixed-head discs storing
32k words per disc are simultaneously searched, nearly
two hundred million comparisons per second are per-
formed. This is approximately the rate of the fastest
processor built. This large system of 100 dises would
cost about $5000 per disc for a total cost of $500,000.
This cost is small compared to that of a new large
computer. Thus, this architecture appears to be cost-
effective. ;

This architecture is based on storage and retrieval
from a segmented sequential table data structure utiliz-
ing associative addressing. This results in the following
characteristics. ~

(1) The search time is independent of the file size.
The data content of each cell is searched in
parallel; the search time depends only upon the
cycle time of the individual storage segment and
the number of instructions in the query.

(2) The search technique is based largely upon con-
text. No tables or cross references are required
to locate data. However, there are cases where
cross references can be used to advantage.

{3) New data may be inserted at any place in the
file. The moving of the data that follows the
place of insertion to make room for the new in-
formation is performed automatically by the
cells.

(4) Whenever information is deleted from the file,
later file entries will be moved to close the gap.
Thus, the locations in the bulk storage will al-
ways be ‘“packed” to put available storage at
the end of the file area. .

(5) The system is a programmable processor. Since

694

Fall Joint Computer Conference, 1972

each instruction takes 1/60 second to be exe-
cuted, as much processing should be done as
possible for each instruction. Further, because
the cell is large, the cost of the processing hard-
ware will be amortized over many words in that
cell. Thus, a large variety of rather sophisticated
instructions will be used to search and edit the
data. Programming with these instructions will
be simpler than programming a conventional
computer in assembler language.

Lastly, since this architecture is basically cellular,
where one disc and associated control hardware is a
(large) cell, the following advantages can be obtained.

@

@)

3)

@)

The system is iterative. The design of one cell is
repeated. The cost of design is therefore amor-
tized over many cells.

The system .is upward expandable. An initial
system can be built with a small number of cells.
As storage demands increase, more cells can be
added. The old system does not have to be dis-
carded.

The system is fail soft. If a cell is found to be
faulty, it can be taken out of the system, which
can still operate with reduced capability.

The system is restructurable. If several small
data bases are used, the larger system can be
electrically partitioned so that each block of
cells stores and searches one data base inde-
pendently of the other blocks. Further, several
systems attached to different computers, say in a
computer network, can be tied together to make
one larger system. Since the basic instruction
rate is only sixty instructions per second, the
time delays of data transmission through the
network are generally insignificant. Thus, the
larger system can operate as fast as any of its
cells for most operations.

Based on these general observations, the segment-
sequential storage has very promising capabilities. In
the next sections, we will describe the machine organiza-
tion and show some types of problems that are easily
handled by this system.

SYSTEM ORGANIZATION

The system block diagram for the segment-sequential
storage is shown in Figure 2. The system consists of a
controller plus a number of identical cells. The controller
provides the interface with an I/0 channel of the central
computer necessary to perform: (1) input and output

& CENTRAL PROCESSOR

INPUT/OUTPUT CHANNEL

4

y

CONTROLLER

BROADCAST/COLLECTOR BUS

4

CELL

o CELL [000 ¢ 0 —P CELL

2 N~

Figufe 2—System block diagram.

CELL

CENTRAL PROCESSOR
INPUT/QUTPUT CHANNEL

|

CONTROL

T- REGISTER

K— REGISTER

1
™ C- REGISTER : Q

I- REGISTER

ROM

1!

OPERANDS MICROPROGRAMS WORD LENGTH
Y+ ¥ 1) [

BROADCAST/COLLECTOR BUS

Figure 3—Controller block diagram

Architecture of Context Addressed Segment-Sequential Storage 695

operations between the central computer’s core storage
and the storage of the individual cells, and (2) search
operations commanded by the central computer. Each
individual cell communicates with the controller via the
broadecast/collector bus and with its left and right
adjacent neighbor by a direct connection. All cells are
identical in structure.

A more detailed diagram of the controller is shown in
Figure 3. The controller appears similar to a conven-
tional dise controller to the central computer. It per-
forms the functions necessary to execute orders trans-
mitted from the central computer via its I/O channel.
The segment-sequential storage is thus able to perform
its specialized search operations under the command of
a program in the I/O channel. Intervention of the
central computer is required only for initiation of a
search and, perhaps, for servicing an interrupt when the
search is complete. ‘

In its role in providing the interface between the
I/0 channel and the cells, the controller is quite dif-
ferent from a conventional dise controller. Instead of
registers for track and head selection, this controller
provides the registers required to hold the information
needed by the cells in performing their specialized search
operations. These registers are:

(1) Instruction Register—I: This register holds the
instruction which tells what function the cells
should perform during the next cycle. The in-
struction is decoded by a read-only memory that
breaks it down into microinstructions.

(2) Comparand Register—C: This register holds the
bit configuration representing the character being
searched for. It has an extension field Q which is
used when writing data into the cell storage.

(3) Mask Register—K: This register holds a mask
which specifies which bits of the C Register are
to be considered in the search.

(4) Threshold Register—T: This register holds a
threshold value which allows use of search eri-
teria other than exact match or arithmetic in-
equality.

(5) Bit-length Register—B: This register is used to
hold the number of bits in the data word. This
allows the word size of the storage segments to
be selected under control of the computer.

A block diagram of the cell is shown in Figure 4.
Each cell executes the commands broadcast by the
controller and indicates the results by transmission of
information to the broadcast/collector bus and also
through separate signal lines to its adjacent neighbors.
The C, K, T, and B Registers of the controller are
duplicated in each cell. These registers are used by the

BROADCAST/ COLLECTOR BUS !
B— REGISTER
|
ARITHMETIC UNIT
C- REGISTER
\———jb
K- REGISTER
- R
T- REGISTE P
STATUS 4%[
——eeee g LOGIC
. — Y
READ WRITE
HEAD HEAD
‘ SEQUENTIAL
MEMORY
SEGMENT

Figure 4—Block diagram of cell

arithmetic unit in each cell in performing the com-
manded operation upon its segment of the storage. The
status register is used to hold composite information
about the flag bits associated with individual words in
the storage segment. Control logic in the cell deter-
mines what signals are passed from the cell to the
broadcast/collector bus and to adjacent cells. Each cell
can transfer its entire storage contents to its neighbor.

DATA FORMAT

The storage structure of the segment-sequential
storage system consists of a number of cells, each of
which contains a fixed-length segment of the total se-
quential storage. Figure 5 depicts the arrangement of
data words within one such segment. The storage seg-
ment within the cell is a sequential storage device such
as a track on a drum or disc, a semiconductor shift
register, or a magnetic bubble storage device. Words
stored in the segment are stored sequentially, beginning
at some predefined origin point. Data read at the read
head is appropriately processed by the arithmetic unit
and written by the write head.

The information structure of the segment-sequential
storage system consists of fixed-length words arranged

696 Fall Joint Computer Conference, 1972

——BR!THME‘NC UNIT l—_

ORIGIN

Figure 5—Word arrangement in a storage segment

in variable-length records. The words in a record are
stored in consecutive storage locations (where the loca-
tion following the last storage location in a segment is
the first storage location in the following segment).
Thus, a record may occupy only a part of one storage
segment or occupy several adjacent segments. The start
of a record is indicated by a flag bit attached to the first
word in the record, and an end of a record is implied by
the start of the next record. Figure 6 shows how a record
may be spread over several adjacent segments.

Figure 7 shows an expanded view of one word in
storage. The b data bits in the word are arranged
serially, least significant bit first, with four flag bits
terminating the word. The functions of the flag bits are:

(1) 8: The START bit is used to indicate the begin-
ning of a data set (record). The search of a rec-
ord begins with a word containing a START bit.

(2) P: The PERMANENT bit is used for special
designations. Interpretation of this bit depends
upon the instruction being executed by the cell.

(8) M: The MATCH bit is used to mark words
which satisfy the search criteria at each step in
the context search operations.

ORIGIN

START OF RECORD

SEQUENTIAL .a—INDICATED
FILE
N BY START BIT
RECORD | E \ ROTATION
 C | /
| B
| Py)
R ORIGIN
| B |
N |
L
L
La
[C |
[T |
[C] ORIGIN
‘ ROTATION \
RECORD 2 [B] kJ
o
o ORIGIN
s
| - |
] N
o]
— ROTATION
START OF RECORD
\ ¥~ INDICATED
BY START BIT

Figure 6—Division of a file into fixed-length segments

(4) X: The X bit is used to mark deleted words.
Words so marked are ignored and are eventually
overlaid in an automatic storage compression
scheme.

OPERATIONAL CONCEPTS

The basic operation in context searching is a search
for records which satisfy a criterion dependent upon
both content and the result of previous searches. As an

LSB

[<————— b DATA BITS

WORD =

Figure 7—Word configuration

Architecture of Context Addressed Segment-Sequential Storage 697

example to illustrate how the segment-sequential
storage is able to search all cells simultaneously, con-
sider the ordered search for the characters A, B, C.
That is, determine which records contain A, B, and C
in that order but not necessarily contiguous.

The three searches required to mark all records that
satisfy such a query are:

(1) Mark all words in storage which contain the
character A.

(2) Mark all words in storage which contain the
character B and follow (not necessarily im-
mediately) a previously marked character in
the same record. At the same time, reset the
match indication from the previous search.

(3) Repeat the operation of step 2 for the character
C.

The result of these steps is to leave marked only those
records which match the ordered search specified.

ORIGIN‘ © ORIGIN ORIGIN ORIGIN
:
¢
5 s [.
M ROTATION G MM ROTATION G M ROTATION “
R/ B Y B Y
N CAA e CA !
M M L]
LS TR RS LS TR RS LS TR RS LS TR RS
[o]o]o]. [oTrTe] [ofr]e] [oJo]o]

Figure 8a—Flag and status bits before start of search

Figure 8 shows four segments of a system which will
be used to illustrate the processing of such a search. The
storage segments each contain four words (characters).
Only the START and MATCH flags are indicated.

The origin (beginning) of each segment is at the top
and the direction of search is clockwise (data bits rotate
counter-clockwise under the head). A record contain-
ing the string Q,C,B,P,A,B,N,L,K,R,C,T,C begins at
the origin of the left-most segment and continues over
all four segments. The right-most segment also contains
the start of the next record which consists of the string
beginning B,A,C. ‘

The first command causes all words containing
the character A to be marked in the MATCH bit.
Thus, after one circulation of the storage, the words are
marked as shown in Figure 8b. ' '

In order to perform context-search operations in one
storage cycle, status bits must be provided in each cell.
These are used to propagate information about records
which are apread over more than one cell. The status

ORIGIN ORIGIN ORIGIN

LS TR RS LS TR RS LS TR RS LS TR RS
[eTeTe] Lol o] r]o] [ofo]1]

Figure 8b—Flag and status bits after search for A
bits and their uses are:

(1) TR: The TRansparent status bit is set if no
word in the cell is marked with a START bit.
It is used to indicate that the status indication to
be transmitted to adjacent cells depends upon the
status of this cell and the status input from ad-
jacent cells. ‘

(2) LS: The Left Status bit is set if any word in a
cell between the origin and the first word marked
with a START bit is marked with a MATCH
bit. This bit indicates a match in a record which
begins to the left of the cell indicating the status.

(3) RS: The Right Status bit is set if any word in the
cell following the last word marked with a
START bit is marked with a MATCH bit. This
bit indicates a match condition which applies to
words stored in the cells to the right of this cell,
up to the next word marked by a START bit.

These status bits are updated at the end of each eycle
of the storage. The condition of the status bits after
each operation is performed is shown in Figure 8.

The second search command causes all previous
MATCH bits to be erased, after using them in marking
those words which contain a B and follow a previously
marked word in the same record. If the previously

ORIGIN ORIGIN ORIGIN ORIGIN
30 2 2Oy
©\° Cul :
A Py R
wi{roTaTION "M ROTATION |2 "M ROTATION JOIM -
s @ ’ s\@ I s I Av
NN AN AT
M M ws
LS TR RS LS TR RS LS TR RS Ls TR RS
LIaTy]

Figure 8c—Flag and status bits after search for B

698 Fall Joint Computer Conference, 1972

ORIGIN ORIGIN ORIGIN ORIGIN
M 1
© ol R3]
mic ROTATION a MM ROTATION Q MM ROTATION ﬁ M
l 2 I e l
8 oS s
mS M S ™S

s M s

.
[1) [o

LS TR RS

NN CREREY

LS TR RS LS TR RS LS TR RS

Figure 8d. Flag and status bits after search for C

marked bit and the word containing the B are in the
same cell, the marking condition is completely deter-
mined by the logic in the cell. However, in most cases
it is necessary to sense the status bits of previous cells
in order to determine whether the ordered search con-
dition is satisfied. Notice that the status bit conditions
can be propagated down a chain of cells in the same
manner as a high-speed carry is propgated in a conven-
tional parallel arithmetic unit. ‘

Figure 8c shows the flag-bit configurations for each
word in storage and the status bits for each cell after
the completion of the search for B. Figure 8d shows the
configurations after the C search. After three cycles of
the storage, all records in storage have been searched
and those containing the ordered set of characters A, B,
C have been marked. In general, a search requires one
storage cycle per character in the search specification
and is independent of the total storage size.

BASIC OPERATIONS

In this section, the operations for performing context
searches are described in a more formal manner than in
the example above. The instructions are a subset of the
complete set which is described in a report.l® The use
of these instructions will be illustrated in the section
following this one.

Each instruction includes a basic operation type and,
in most cases, a function code which further specifies
what the instruction is to do. Figure 9 shows the instruc-
tion format and its variations. Instructions which per-
form search and mark operations use the function code
to specify the type of comparison to be used. Instruc-

SEARCH & COMPARAND COMPARISON
MARK TYPE

INST

TYPE COMPARAND

FUNCTION

Figure 9a—Basic instruction format

Figure 9b—Search and mark instruction format

tions which initiate input or output operations allow
two specifications in the function field. The first desig-
nates the channel to be used in the data transfer. The
second tells whether the start of each record should be
marked, in preparation for another search operation.

The symbols used in describing the instructions are
given below. The notation is that due to Iverson, modi-
fied for convenience in describing some of the special
operations performed by the search logic.

B: The contents of the Bit-length Register is
denoted B. The word length b= L B.

C: The contents of the Comparand Register is
denoted C. Individual bits are c; (least sig-
nificant bit) through ¢, (most significant bit).

K: The contents of the Mask Register is denoted
K. Individual bits are represented by the
same scheme as that used for C.

W: The word of cell storage currently being con-
sidered is denoted W. Individual bits are
represented by the same scheme as that used
for C.

R: R denotes the contents of a flip-flop in each
cell which is used to indicate the result of the
comparison. R—1 for a “match” and R0
for “no mateh”. The match performed is the
comparison between C and W in those posi-
tions where k; = 1. In the examples considered
in this paper, the comparisons are arithmetic
("_': <, Z)

M: The MATCH bit associated with each word
(see Figure 7) is denoted M. M without super-
script designates the MATCH bit in the word
being compared, W. M with a numeric super-
script indicates the MATCH bit before or
after the one being compared; e.g., M—?
represents the MATCH bit two words before
the word on which the comparison is being
made. Inequality signs used as superseripts
indicate logic signals representing the union of

INPUT —
OUTPUT

NOT USED CHANNEL *
NUMBER

3 INDICATES THE START FUNCTION BIT

Figure 9c—Input-output instruction format

Architecture of Context Addressed Segment-Sequential Storage 699

TABLE I—Description of Instructions

SS C String Search
M—RAM)V(MAP)
Set the MATCH bit in any word where the masked
comparison of the word and the comparand satisfies
the comparison type specified in the function field of the
instruction and the word is immediately preceded by a
word in the same record which was left with its MATCH
bit set by the previous instruction. Also, set the MATCH
bit in any word which was left with its MATCH bit set
by the previous instruction and has its PERMANENT
bit set. Reset all other MATCH bits.
Ordered Search
M—~RAMS)V(MAP)
Set the MATCH bit in any word where the masked
comparison of the word and the comparand satisfies the
comparison types specified in the function field of the
instruction and the word is preceded (not necessarily
immediately) by a word in the same record which was
left with its MATCH bit set by the previous instruction.
Also, set the MATCH bit in any word which was left
with its MATCH bit set by the previous instruction and
has its PERMANENT bit set. Reset all other MATCH
bits.
MS — Mark Start
wi—SA(M>VM) where i=_| (Channel No.)
M—SA(Start Function)
If the channel number i specified in the instruction is
between 1 and b, set wi, the ith bit of the first word in
any record which contains a word with its MATCH bit
set. If the start function bit in the instruction is a one,
set the MATCH bit in any word which has its START
bit set. Reset all other MATCH bits.

oS C

~all MATCH bits in the record before (M<)
and after (M”) the word being compared.

P: The PERMANENT bit associated with each
word (see Figure 7) is denoted P. The same
superseript conventions apply to P as to M.

S: The START bit associated with each word

. (see Figure 7) is denoted S. The same super-
script conventions apply to S as to M.

The instructions which are considered in the examples
in the next section are described in Table 1.

SEARCH EXAMPLES

The following examples show the application of the
segment-sequential storage to matching strings with
templates.”! A template consists of characters separated
by parameter markers which are to be matched by
parameter strings. For example, ABCDEF is a
template which matches any string formed by the con-
catenation of any arbitrary string, the string AB,
another arbitrary string, the string CD, another arbi-
trary string, the string EF, and another arbitrary string.

TABLE II—Data Format for

String XYABLMNCDPEFWZ
WORD CONTENTS
1 I/0 Flags (S)
2 X
3 Y
4 A
5 B
6 L
7 M
8 N
9 C
10 D
11 P
12 E
13 F
14 W
15 Z

(8) indicates the START bit for this

word is set.

TABLE III—Program to Find Match for $AB§CD$EF$

INSTRUCTION

NO. TYPE FUNCTION COMPARAND REMARKS

1 (O3]
2 S8
3 (OS]
4 S8
5 08
6 SS
7 MS

2,8

A

mark all strings
which begin A
or $.

mark all strings
which begin
AB, §, or $B.

mark all strings
which follow the
above strings
and begin C or
$.

mark all strings
which satisfy
the AB search
and contain a

subsequent string
which satisfies
the CD search.

mark all strings
which follow the
above strings
and begin E or
$.

mark all strings
which satisfy
the template.

flag channel #2
for input and
mark the start
of each record.

700 Fall Joint Computer Conference, 1972

The arbitrary strings need not be the same, and any or
all may be the null string. The string XYABLMNCD-
PEFWZ is one example of a string which matches this
template.

In the following examples, it is assumed that the
first word in each record has had its MATCH bit set
by the last instruction of the previous search. The pro-
grams shown perform the specified search, initiate the
input of the selected records to the computer, and mark
the first word of each record in preparation for the next
search.

Find strings to fit a template

The case where a set of fixed strings is stored in the
segment-sequential storage is illustrated first. The data
format for a typical string is shown in Table II. The
first word is used to hold I/O flags. The characters in
the string are stored in sequential words following the
. 1/0 word. '

The program to search all strings in storage and mark
the ones that match the template ABCDSEF$ is
shown in Table III. A template search takes one instruc-
tion for each character in the template plus an instruc-
tion to set the I/0 flag in those records which contain
the strings matching the template.

Find templates to fit a string

The case where a set of templates is stored in the
segment-sequential storage is considered next. The data
format for stored templates is shown in Table IV. The
parameter marker, $, is replaced in storage by use of
the PERMANENT bit in those words which contain a
character which is followed by a parameter marker.

A program to find templates to match the string
XYABLMNCDPEFWZ is shown in Table V. The

TABLE IV—Data Format for Template

ABCDSEF$S
WORD CONTENTS
1 I/0 Flags 8),(P)
2 A
3 B (P)
4 C
5 D (P)
6 E
7 F P)
(8) indicates the START bit for this word is
set.
(P) indicates the PERMANENT bit for this
. word is set.

TABLE V—Program to Find Templates for
XYABLMNCDPEFWZ

INSTRUCTION
NO. TYPE FUNCTION COMPARAND REMARKS

1 SS = X mark all strings
“which begin X
or §.

2 SS = Y mark all strings
which begin XY
or §.

3 Ss = A

4 SS = B

5 SS = L

6 Ss = M

7 SS = N

8 Ss = C

9 SS = D

10 Ss = P

11 S8 = E

12 S8 = F

13 SS = w

14 S8 = Z

15 MS 1,8 — flag channel #1

for input and
mark the start
of each record.

execution of this program illustrates how the PERMA-
NENT bit is used. The X and Y searches do not find a
match with the template shown in Table IV. However,
since the PERMANENT bit in the first word in the
record is set, the first word will remain marked by a
MATCH bit and therefore continue as a candidate for a
successful search. ‘

The A and B searches cause the MATCH bit in the
word containing B to be set. Since this word also has its
PERMANENT bit set, the MATCH bit will remain set
during the searches for the remaining characters in the
input string (except for the last character). The search
continues in this fashion, with MATCH bits associated
with characters immediately followed by a parameter

_marker being retained. This results in multiple string

searches within each record, corresponding to different
ways a given string may fit a template.

The search process continues in this fashion up to the
last character in the input string. There are two ways
in which a template can satisfy this search: (1) the last
character in the template may match the last character
in the input string and the next-to-last-character in the
template have its MATCH bit set, or (2) the last char-
acter in the template may have both its MATCH bit
and its PERMANENT bit already set. The last search
instruction in the program tests for both these condi-
tions and at the same time resets the MATCH bits in
all characters which do not meet the conditions. The

Architecture of Context Addressed Segment-Sequential Storage 701

last instruction in the program causes the records which
satisfy the search to be marked for input to the com-
puter’s core storage.

The examples above show that the segment-sequential
storage reduces the finding of matching templates to a
simple search. The time required to execute such a
search depends only upon the number of characters in
the query.

Examples of other possible applications of the seg-
ment-sequential storage are given in a report.!® One use
is retrieval of information necessary to display a portion
of a map. This is a typical problem encountered in
graphie displays, where a subset of the data base is to
be selected on the basis of x—y location. Another ex-
ample is the use of the segment-sequential storage to
simulate networks of linear threshold devices.

CONCLUSIONS

This paper has presented a new architecture designed
to solve some of the problems in searching large data
bases. The examples given indicate its usefulness in
several practical applications. Since the system is built
around a relatively inexpensive storage medium, it is
feasible now. In the future, LSI techniques should make
its cellular organization even more attractive.

REFERENCES

1 P ARMSTRONG
Several patents

2 G J LIPOVSKI
On data structures in associative memories
Sigplan Notices Vol 6 No 2 pp 347-365 February 1971

3 G ESTRIN R H FULLER
Some applications for content-addressible memories
Proc FJICC 1963 pp 495-508

4 R G EWING P M DAVIES
An associative processor
Proc FICC 1964 pp 147-158

5 G J LIPOVSKI
The architecture of a large associative processor
Proc SJCC 1970 pp 385-396

6 L HELLERMAN G E HOERNES
Control storage use in implementing an assoctative
memory for a time-shared processor
IEEE Trans on Computers Vol C-17 pp 1144-1151
December 1968

7P T RUX
A glass delay line content-addressed memory system
IEEE Trans on Computers Vol C-18 pp 512-520
June 1969

8 I FLORES
A record lookup memory subsystem for software facilitation
Computer Design April 1969 pp 94-99

9 G J LIPOVSKI
The architecture of a large distributed logic associative memory
Coordinated Science Laboratory R-424 July 1969

10 L D HEALY G J LIPOVSKI K L DOTY
A context addressed segment-sequential storage
Center for Informatics Research University of Florida
TR 72-101 March 1972
11 P WEGNER

Programming languages, information structures, and
machine organization
McGraw-Hill 1968

A cellular processor for task assignments
in polymorphic, multiprocessor computers

by JUDITH A. ANDERSON

National Aeronautics & Space Administration
Kennedy Space Center, Florida

and
G. J. LIPOVSKI

University of Florida
Gainesville, Florida

INTRODUCTION

Polymorphic computer systems are comprised of a
large number of hardware devices such as memory
modules, processors, various input/output devices,
etc., which can be combined or connected in a number
of ways by a controller to form one or several computers
to handle a variety of jobs or tasks.! Task assighment
and resource allocation in computer networks and
polymorphic computer systems are currently being
handled by software. It is the intent of this paper to
present a cellular processor which can be used for
scheduling and controlling a polymorphic computer
network, freeing some of the processor time for more
important functions. (See Figure 1.) ‘

Work has been done in the area of using associative
memories and associative processors in scheduling and
allocation in multiprocessor systems.?? Since the
scheduling process often involves a choice of hardware
resources which might do the job, a system able to de-
tect “m out of n’’ conditions being met would be more
suited to the type of decision-making required. The
system to be discussed involves a threshold-associative
search; that is, all the associative searching performed
detects if at least m corresponding bits in both the as-
sociative cell and the comparand are one.

Scheduling and controlling can be divided into three
distinct phases. The first is task qualification, determin-
ing which tasks are possible with the available hardware.
The second phase is task assignment, deciding which of
the candidate tasks found to be qualified in the first
phase will be chosen to be performed next. The third
phase is the actual controlling or connection of the

703

switch required to restructure the computer to perform
the selected tasks. ‘ o

This paper will be restricted to those functions per-
formed by the cellular processor; in particular, the task
qualification phase and the portions of the task assign-
ment phase related to the cellular processor.

SCHEDULING

The method for ordering requests consists of storing
the queue of requests in a one-dimensional array of cells.
One request requires several contiguous cells for storage.
The topmost cells store the oldest request. New requests
are added to the bottom and are packed upward as in a
first-in, first-out stack. An associative search is per-
formed over all the words stored to determine which re-
quests qualify for assignment. The topmost request
which qualifies will be chosen for assignment. Using a
slightly more complex cell structure, a priority level
may be associated with each request, resulting in a
priority based, rather than chronological, method for
task assignment, providing for greater flexibility. The
priority-based system will not be discussed here, but
further detail relative to it may be found in a previous
report.*

METHOD OF OPERATION

The basic system consists of a minicomputer and a
cellular processor for task ordering. (See Figure 1.) Re-
quests generally take the form of which processors are
required, how much memory is required, and which

704 Fall Joint Computer Conference, 1972

lmmouv] ! TAPE

units | | orives] l"“' l piscs

I I]: I SWITCH CONTROL
(MINICOMPUTER)
SWITCHING
oroers_ | _ QUALIFIED
CENTER STATUS REQ. TASKS
CELLULAR
I I I PROCESSOR

! “ I | CARD |
PRINTER PUNCH CRY'S READER

Figure 1—Polymorphic computer network controlled by
cellular processor and minicomputer

peripheral devices and how many of each type are re-
quired to perform a particular task. These requests are
made to the minicomputer via a simple, low-volume
communication link, such as a shift register, data bus,
or belt. The minicomputer then formats the requests
into a request set which is explained below.

The request set is given an identification word and is
input to the bottom of the task queue stored in the
cellular processor. This unit stores all the request sets
and determines which requests can be qualified for as-
signment based on current hardware availability. The
topmost request set in the cellular processor which
qualifies is chosen for assignment.

It is necessary for the processor to know which de-
vices in the polymorphic computer system are not cur-
rently in use, and therefore are available for assignment.
To provide this information, each physical device in
the system has a bit associated with it in an Avaslability
Status Register. If a unit, such as a tape drive, is free,
its corresponding bit in the status register will be a
one. When the unit is in use, its corresponding bit will
be reset to a zero.

The requests are of the form indicating which type of
hardware devices are required, how many are required
and which, if any, particular physical units are required.
These requests can all be expressed as a Boolean AND
of threshold functions. Each request word will corre-

TABLE I—Status Register Assignment

BIT : DEVICE
1,2 Processors 1 and 2
3-6 Memory Units 1-4
7-12 Tapes Drives 1-6
13 Line Printer ~
14 Disc
15 Card Reader
16 Card Punch
17,18 CRT 1 and 2

spond to one threshold function, including the threshold
value. The devices chosen from to meet that threshold
value will be indicated with a one in its bit position.
Let S be the status register and (@) (T) be the request
word where @ is the binary vector representing a re-
quest and T the binary number giving the threshold
value T'. The output C of the threshold function may be
expressed as

C—T< 3 QUITASLI]

A request set then consists of an identification word
and a word for each threshold function necessary to ex-
press the entire request.

Consider, for example, a system composed of the com-
ponents or peripheral devices and the status register bit

ID WORD

8iTs:
1 2 3 4 5 6 7 8 9 10 1 12 13 4 35 16 17 18}19 20 21 22

000000001100101101j1001

10 THRESHOLD

REQUEST WORDS

100000!100000!100'0100100
00'000010111110'000000010
00'1 11 11000000‘0'0'0(0000010

nocl MEMORY | TAPE DRIVES

l u' o |cn :c'l CRT | THRESHOLD

|
Figure 2—Request set example

assignments shown in Table I. The status register in
this example would be 18 bits long.

A request would be of the sort that the required de-
vices for Task Number 429 are Processor 1, CRT 1,
Tape Drive 1, and any two other tape drives, the Line
Printer, and any two memory units. This request set
would consist of four words, the ID word and three
request words, shown in Figure 2.

The threshold value of the ID word is set exactly
equal to the number of “1’s” in the ID field. This is
for hardware considerations in order to do an associative
search on the ID words. All the units which are abso-
lutely necessary (mandatory devices) can be compactly
represented by a single threshold request that imple-
ments the AND function. The first request word repre-
sents all such mandatory devices, whereas the second
and third request words represent “any two other tape
drives” and “any two memory units,” respectively.

A Cellular Processor for Task Assignments 705

This request set, along with any other requests which
were made would be input to the queue. When all three
of the request words above could be satisfied with some
or all of the available hardware, an interrupt to the
minicomputer is generated. The minicomputer can then
read out the ID word of the topmost request set that
can be satisfied and is therefore qualified. If this request
set is the highest in the queue, it will be assigned. Which-
ever request set is read out will be removed from the
cellular processor and the requested resources allocated
for that task by the minicomputer.

HARDWARE DESCRIPTION

The hardware realization for this cellular processor
consists of a bilateral sequential iterative network.’
That is, it is a one-dimensional array of cells, all cells

[status rEG | [outPuT REG]

o [TMER

S

/ ?D

N
|

[=riln

LOAD REGISTER

Figure 3—Cellular processor

%r_)—T:OMB 1 INT ilwee)
I LOGIC i ,

having the same structure and containing sequential
logic. Each cell receives external inputs as well as inputs
which are outputs from its adjacent cells as shown in
Figure 3.

Each cell stores either a request word or an ID word,
or it is empty. All cells receive hardware status informa-
tion which is broadcast into them continuously for
comparison with their stored requests. When one or
more request set has qualified for assignment, an inter-
rupt is generated to the minicomputer. A hardware
priority circuit chooses the topmost qualified request to
be assigned. The cellular processor outputs the ID
word for this request via a data channel which is set up
through all the cells above the cell containing the quali-
fied request in the queue. When a request is chosen for
assignment, its ID word is broadcast to the cellular
processor for removal from the queue. A timer is as-
sociated with the uppermost cell in the array and is
used to indicate if requests are stagnating in the queue
so that action may be taken by the minicomputer.

Requests are always loaded into the bottom of the
queue. Removal is either from the top, when the timer
mentioned above exceeds some maximum value, or by
deletion after the request has been assigned. If a task
request is cancelled, it may be removed from the queue
by treating it as if it were assigned. When requests are
removed from the middle of the queue by assignment,
the other requests move upward to pack into the emp-
tied cells.

Each cell is basically made up of an n-bit register, a
threshold comparator, two cell status flip flops, a data
channel, and combinational logic as shown in -Figure 4.
The n-bit register is divided into two fields. The first &
bits, @, store the binary vector representation of the
request or ID word. The last n—Fk bits represent the
threshold value, T, for the threshold comparator. The
threshold comparator, which will be discussed in more
detail later, outputs a one if and only if at least T
positions in both @ and the status input, S, are one’s.
That is,

C—T< > QLIIAS[I] or,
C—0= (2 QUIASID — (22 TLIIX2Y).

The two cell status flip flops, TOP¢¢ and Dy indicate
whether a cell contains an ID word or not and whether
a cell contains data or is empty, respectively.

The data channel through each of the cells is used to
output information and for packing data to economize
on the number of pins per cell. The data flow in the
data channel is always upward, toward the top of the
queue. The data channel within a cell may be operated
in two ways. It may allow data coming into the cell on

706 Fall Joint Computer Conference, 1972

| CONTROL
t LINES

COMBINIATIONIAL |

l.;OGIIC : [INT

(YO OI,

TREE

DATA
CHANNEL

s
(stavus InruT)

Figure 4—Basic iterative cell

the channel to pass through into the data channel of
the next cell and will be referred to as the bypass mode
of operation. Also, by means of an electronic switch, it
may place the contents of its register into the data
channel. This will be referred to as the transfer mode.
Through the use of the load enable of the register (the
clock input of the register flipr flop), it is also possible to
load the register with the information which is in the
data channel. Operation of the data channel is con-
trolled by the cell status, the control signals from the
minicomputer, and a compare rail, CT.

When a request is loaded into the cellular processor,
it enters via the data channel and is loaded adjacent to
the lowest cell containing data. This is determined by
the Dy¢; output from the cells. Once a cell has data
loaded, its threshold comparator continuously com-
pares the register contents, @, against the status, S.
When a threshold compare has been achieved, that is,

T< 3 SLIIAQLI]

a one is ANDed into the CT rail, which is propagating
upward, toward the top of the queue. When all the re-
‘quest words in a set compare, the CT rail entering the
TOP cell of the request set is a logic one. This causes an
interrupt to be generated, indicating to the minicom-
puter that there is a qualified set. The interrupt, INT,
is placed into an OR tree external to the cell network to
speed the interrupt signal to the minicomputer to in-
crease response time of the system. Upon receipt of the
interrupt, the minicomputer can interrogate the pro-
cessor to determine which request set caused the INT
to be generated. The ID word of the topmost qualified
set is broadcast via the data channel, and stored in the
output register. The minicomputer can then remove the

request set-from the queue by placing the ID of that
set on the status lines and commanding a set removal
via the control lines. While a removal is being com-
manded, the set whose ID matches with the ID on the
status lines resets its data flip flop, D¢y, and passes a
one along the R (reset) rail. This rail propagates in a
downward direction and causes all cells to reset their
D until a TOP cell is encountered. This removes the
request set from the queue. There now is a group of
empty cells in the middle of the stack of cells. When a
cell containing data detects an empty cell above it, it
places its data into the data channel and generates a
pulse on the DR (data ready) rail. This pulse travels
upward and enables the loading of data into the upper-
most cell in the group of empty cells, that is, the first
empty cell below a non-empty cell which it encounters.
This is determined by D’, the value of the Dgs of the
next higher cell. Each cell moves its data upward until
all the empty cells are at the bottom of the queue.
The comparison operation is not stopped by the data
being in the process of packing. The compare rail, CT,
is passed through empty cells unless the DR rail is high,
indicating data is actually in transit. An example of the
switching of the data channel during the loading and
shifting, or packing, process is shown in Figure 5.

1 . p) }
f==us A T

) / P
[x Jofoj [8 Jo[1] [8 Jo[1]

p))
L 8 Jol1] [x JoJo] [¢ Jolh]

)) p,
[x foJo] [¢ Jo[h] [x [o]o]

1) /
[x JoJo] [x ToJo] [x ToJo]

[< o [o To] [o o]

Figure 5~—Example of shifting and loading

A Cellular Processor for Task Assignments 707

Further details of the cell operation are given in an
earlier report.* A method for implementing priority
handling was also discussed.

THRESHOLD COMPARATOR

Current literature on threshold logic discusses inte-
grated circuit realizations of threshold gates with up to
25 inputs and with variable threshold values.®” The
threshold comparator mentioned earlier consists of a
threshold gate with variable threshold which is selected
by the contents of the threshold register. The inputs to
the threshold gate are the contents of the status register,
S, ANDed bit by bit with the contents of the cell re-
quest register, @, as shown in Figure 6. All inputs are
weighted one.

173

Cet< 2 slilaaqlll

Figure 6—Threshold comparator

If the number of inputs to the threshold gate is re-
stricted to the 25 inputs indicated above, the hardware
realization discussed here must be modified to overcome
this restriction. In particular, the various types of re-
sources can be divided into disjoint sets of similar or
identical devices such as memory units, processors,
I/O devices, etc. A request would not be made, for
instance, which would require either a tape drive or a
processor. Each set would then have a threshold value
associated with it and the compare outputs from all the
threshold gates would be ANDed to yield the cell com-
pare output, as illustrated in Figure 7. For simplicity,
we will assume an ideal threshold element exists with an
unlimited number of gate inputs in our further dis-
cussion, which can be replaced as indicated above.

For large computer networks, the number of devices
will be large. Since the processor discussed here requires

L°| ITI rqz ’ﬂ

Figure 7—Modular threshold comparator

more than 3n interconnections (pins) for each eell,
where 7 is the number of devices, a method of dividing
the cell into smaller modules which are feasible with
current technologies in LSI must be considered.

First, the cell must be split into modules of lower bit
sizes. This may be done as discussed previously by di-
viding the hardware devices into disjoint sets of similar
or identical devices. Each module or sub-cell will then

“have a threshold associated with it and a threshold

comparator. One control sub-cell is also necessary which
will contain all the logic required for storing the cell
status, generating and propagating the rail signals, and
control the data channels in the other sub-cells in its
cell group. This is illustrated in Figure 8.

This modularity of cell design also allows the cellular
processor to be expandable. If the system requirements
demand a larger (more bit positions) cell, rather than
having to replace the entire cellular processor, an addi-
tional storage module may be added for each cell. This
also reduces the fabrication cost since only two cellular
modules would have to be designed regardless of the
number of devices in a system.

CONTROL LINES Df ‘:
| Ll
! comainationat! 1 fine
I l LOGIC ', : ', —)
| T 1
ASSOCIATIVE STORAGE CONTROL
MODULES MODULE

Figure 8—Modular cell structure

708 Fall Joint Computer Conference, 1972

CONCLUSION

The threshold associative cellular processor incorporates
a very simple comparison rule, masked threshold com-
parison. This rule was shown to be ideally suited to task
qualification in a polymorphic computer, or an inte-
grated computer network like a polymorphic computer,
and was shown to be easily implemented in current
LSI technology.

The processor developed using this type of cell would
considerably enhance the cost effectiveness of poly-
morphic computers and integrated computer networks
by performing task requests and would reduee the soft-
ware support otherwise required to poll the status of
devices in the polymorphic computer or an integrated
computer network. The scheme shown here will have
application to other task qualification problems as well,
such as a program sequencing scheme to order programs
or tasks based on a requirement for previous tasks to
have been performed.* This modular cellular processor
provides a system which can handle a wide range of
scheduling problems while retaining a flexibility for ex-
pansion and at the same time increasing speed by per-
forming the parallel search rather than polling.

REFERENCES

1 H W GSCHWIND
Design of digital computers
Chapter 9 Springer Verlag 1967
2 D C GUNDERSON W L HEIMERDINGER
J P FRANCIS '
Assoctative techniques for control functions in a multiprocessor,
final report :
Contract AF 30(602)-3971 Honeywell Systems and
Research Division 1966
3 D C GUNDERSON W L HEIMERDINGER
J P FRANCIS ‘ .
A multiprocessor with associative control
Prospects for Simulation and Simulator of Dynamic
Systems Spartan Books New York 1967
4 J A ANDERSON
A cellular processor for task assignments in a polymorphic
computer network
MS Thesis University of Florida 1971
5 F C HENNIE
Finite state models for logical machines
John Wiley & Sons New York 1968
6 J H BEINART et al
Threshold logic for LSI
NAECON Proceedings May 1969 pp 453-459
7 R O WINDER
Threshold logic will cut costs especially with boost from LSI
Electronics May 27 1968 pp 94-103

A register transfer module FFT processor for speech analysis

by DAVID CASASENT and WARREN STERLING

Carnegie-Mellon University
Pittsburgh, Pennsylvania

INTRODUCTION

On-line speech analysis systems are the subject of much
intensive research. Spectral analysis of the speech
pattern is an integral part of all such systems. To
facilitate this spectral analysis and the associated
preprocessing required, a special purpose fast Fourier
transform (FFT) processor to be desecribed is being
designed and constructed. One unique feature of this
processor which facilitates both its design and imple-
mentation while providing an easily alterable machine
is its construction from standard logic modules which
will be referred to throughout as register transfer
modules or RTM’s.! This design approach results in a
machine whose operation is easily understood due to
this modular construction.

Two of the prime advantages of such a processor are:

(1) The very low design, implementation, and
debugging lead times which result from the RTM
design at the higher register transfer logic level
rather than at the conventional gate level.
The RTM processor can be easily altered due to
the pin-for-pin compatability of all logic cards.
Different hardwired versions of a given al-
gorithm can be easily implemented by appro-
priate back plane rewiring.

(2

Because of the stringent time constraints imposed by
such a design effort, this processor can also serve as a
feasibility model for the use of RTM’s in other complex
real-time systems. This is one area in which little work
has been done.

When in operation, the processor will accept input
data in the form of an analog speech signal and output
the resultant spectral data to a PDP-11 computer for
analysis.

709

FOURIER TRANSFORM APPLICATIONS TO
SPEECH PROCESSING?

Let us briefly review Fourier transform techniques as
used in speech processing. ‘

In the discrete time domain, a segment of speech
s(¢T+nT) can be represented by

S(ET+nT) =p(¢T+nT)xh(nT) (1)

where % denotes discrete convolution and £T is the
starting sample of a given segment of the speech wave-
form. p(¢T+nT) is a quasiperiodic impulse train
representing the pitch period and h(nT) represents the
triple discrete convolution of the vocal-tract impulse
response »(nT), with the glottal pulse ¢(nT) and
radiation load impulse response r(nT"),

h(nT) =v(nT)%r(nT)%g(nT) (2)

The vocal tract impulse response is characterized by
parameters called formant frequencies. These param-
eters vary with corresponding changes in the vocal
tract as different sounds are produced; however, for
short time spectrum analysis of speech waveforms, the
formant frequencies can be considered constant.

Given the above speech model, speech analysis
involves estimation of the pitch period and estimation
of formant frequencies. These parameters are estimated
using the cepstrum of a segment of a sampled speech
waveform. For our purposes, the cepstrum is defined
as the inverse discrete Fourier transform (IDFT) of
the log magnitude spectrum of the speech waveform
segment. The details of cepstral analysis are shown in
Figure 1. The input speech segment to Figure 1
s(¢T+nT), typically about 20 msec in duration, is
weighted by a symmetric window function w(nT)

z(nT) =s(¢T+nT)w(nT)
=[p(ET+nT)xh(nT)J-w(nT) 0<n<N (3)

where N is the number of samples of the ‘spéech wave-

AMPLITUDE

710 Fall Joint Computer Conference, 1972

winT)

)\ jerk A
SETanT)_ b, O o T e N) [R

- pFrofe@-c0T_fipFy

Jim

Figure 1—Cepstral analysis for formant frequency
determination
X denotes log magnitude spectrum
X denotes cepstrally smoothed log magnitude spectrum

form. The window function minimizes the effect of a
nonintegral number of pitch periods in each speech
segment by de-emphasizing the samples at both ends of
the segment. A typical window used for this purpose is
the Hamming window defined by

0.54—0.46 cos 2mnT/NT) 0Z<nT<NT

wnT) =
0 elsewhere
(4)
With w(nT) slowly varying with respect to s(nT),
z(nT) =h(nT)%p,(nT) (5)
where
Pu(nT) =p(§T+nT)w(nT) (6)

After the first Fourier Transform (DFT-1) the speech
spectrum becomes

IX(ej(Zark/N)) l = IH(ei(Zark/N)) , . IPw(ej(zrk/N)) l (7

BRE Sl (1))
cepstrum

pitch period
peak

o / -

TIME (msec)

Figure 2—(a) The cepstrum

The log magnitude operation (log| X |) then yields
log | X (e7em+/M) |
= log l H (ei@mtIN)) | + log | P, (ef@m M) | (8)

The inverse transform (IDFT) of this log magnitude
spectrum is the cepstrum c¢(nT). The pitch period
corresponding to a distinct peak in the cepstrum is
removed by multiplying ¢(n»T) by a function [(nT)
of the form

I(nT)
1 I’I'LT [<1'1
= § B{l+cos [x(nT—m)/Ar]} n<|nT |<n+Ar
0 | nT |>7m+Ar

(9)

where 71+ Ar is chosen less than the minimum pitch
period expected. The final Fourier transform (DFT-2)
then yields the desired spectral envelope.

cepstrally smoothed
log spectrum

log spectrum

wit
S

i >
FREQUENCY (kHz)

(b) The log magnitude spectrum and spectral envelope

Figure 2a shows the cepstrum, the pitch period
corresponding to the distinct peak at the right. The
dotted line in Figure 2a represents the [(nT") function
above. Figure 2b shows the original log magnitude
spectrum (solid line) and the resultant “‘smoothed”
spectrum or spectral envelope (dotted line) from which
the formant frequencies can be estimated.

APPROXIMATE BINARY LOGARITHMS®

The binary logarithm can easily be obtained by the
following algorithm. A binary number N, can be

Register Transfer Module FFT Processor 711

A
Re r
Im % %
=1
Kl

AT=time between samples

Figure 3—Symmetry of the complex discrete fourier transform
for real-valued input

written as

N= ZZ,2'

=i

(10)

where m and j represent the binary powers of the most
and least significant bits respectively. If the power of
the most significant nonzero bit is denoted by k, N can

TABLE I—Function F(z) Used to Calculate Binary
Logarithm of «

Range F(x)
0<z<.25 —
<z +128+/2s
.25 <2< .50 z 4 3x/64 + Y
50 <z < .75 x+7(1 x)+/32
<z <1 r + 29(1—x)/128

be rewritten as

k—1
N=2+ > Z2¢ m>k>j (11)
=7
k—1
=2k [1+ Zziw—k} =2k(1+1) (12)
=i

where 0<x <1 since k>j. Logs N can then be approxi-
mated by Logs N=L(N)=k+4F(x) where F(x) is
chosen from Table I.

By(0) By(1) By(2) By(3) B, (4) B,5Y B, (6) BOU) B,(8) B (9) B (10) B (11) 30(12)’ B,(13) B (14) B (15)
. W
: ¢
}‘—'COMPLEX CALCULATION (C.C.)
i
|
B,(0) B,(1) B(2) B(3) B (4 B(5) B(6) B(7) B(8 B(9) By(10) By(11) B (12) B (13) B, (14} B, (15)
Soo--) _:/_,O/ '\r ==
: o ' Wl
, C.C. ! ! c.c. \
B,(0)" By(1) By(2) B,(3) B,(4) B,(5) B,(6) B,(7) B,(8) B,(9) B,(10) B,(11) B,(12) B,(13) B,(14) B,(15).
'\!, _______ _:/ '\"_ < / I\:_ =< / v \r /
: 0 i — W’ | — |
Ioc.C. ' c.c ; ,c.co I c.c. |
: . | ! 1]
B, (0) B z(1) B (2) B,(3) Bg(4) B (5) Bg(6) By(7)° Bg(8) Bg(9) Bg(10) By(11) B.(12) B, (13) B.(14) B.(15)
X(0) X(8) X)X (4) Xp(2) Xp(2) Xp(e) Xp(6) Xp(1) X (1) Xp(7) Xp(7) Xp(3) Xy(3) Xp(5) X{(S)

Figure 4—The real-valued input FFT algorithm for N =

16 * denotes complex conjugate

712 Fall Joint Computer Conference, 1972

a + ib + - g'+ib!'
c + id uJ c'+id!
W
_ 2mm ., .. 2mm
Wm-cos -—N +J.Sln-——-N
27m 2mm
t : oA
a a + (c cos N + d sin N)
27Tm 21m
' = — i —_—
b b + (d cos N ¢ sin =)
oo 2mm 2mm
c a - (c cos 5 d sin R)
v _ 2mm _ . 2mm
d [b - (d cos =} ¢ sin 57]

Figure 5—The complex calculation
* denotes complex conjugate. N = number of samples

Computer calculations using this algorithm yielded a
maximum error computed at critical values and extrema
which ranges between —0.00782 and 0.0094. The
coefficients of f(x) were chosen for easy of binary
implementation.

FFT ALGORITHM FOR REAL-VALUED INPUT

Various FFT algorithms exist. One particularly
adaptable to RTM implementation will be briefly
reviewed. The complex discrete Fourier transform of a
sampled time series z(k) (k=0,...,N—1) can be
written as

n—1

X(j)= % 2 a(k)e-mriy (13)
NS
It has been shown! that when the z(k) series is real,
Re [X ()] is symmetric about the folding frequency
Fy; and Im [X ()] is antisymmetric about F;. Figure
3 shows this pictorially.

An algorithm® which eliminates calculations that will
lead to redundant results in the real-valued input case
has previously been discussed. Figure 4 graphically
illustrates this algorithm for N=16. The algorithm
can be represented by the expression

n—1

X(j)= 2 Bo(k)W—* (14)
k=0

where W=e2m/¥; B,(k) is real; j=0,1,...,N/2; and
N =27 where m is an integer. ‘

The “complex calculation” shown in Figure 4 is a
slight modification of the butterfly multiply® normally
used in FFT algorithms. Details of the calculation are
shown in Figure 5, from which the signal flow is appar-
ent. Each complex calculation box, as shown, moves to
the right to operate on all operands within its group.
On the first level, this box performs eight computations,
on the second level each box performs 4 calculations,
ete.

Since the multiplications are ordered as above,
addressing for this multiplier is fairly straightforward.
For ease in accessing the complex multiplier W=, its
complex values should be stored in the order in which
they occur. An algorithm for determining the sequence
of the exponent m has been documented, and a set of
recursive equations which specify the addresses of the

- four operands for every complex calculation can be

formulated.’ The address sequencing is easily imple-
mented in a hardware unit for automatic generation of
the required addresses in the proper sequence.

It is apparent from Figure 4 that all complex cal-
culations involving one complex multiplier W™ can be
completed before the next complex multiplier is used.”
For example, all calculations involving W can be com-
pleted on all 3 levels, then all calculations involving
W2, ete. In the conventional method all calculations on
one level are completed before dropping to the next
level. If the complex multipliers are stored in their
accessed order, there is no need to explicitly store the
sequence of exponents. Furthermore, each complex
exponent in this addressing scheme need be accessed
only once. .

As in the conventional FFT implementation, the
resultant Fourier coefficients must be re-ordered. With
the accessing order of the complex multipliers specified
by a linear array A, the exponent m for the sth W is
given by m=A (¢). An inverse table look-up enables the
scrambled Fourier coefficients to be accessed from
memory in the order of ascending frequency. To imple-
ment this inverse table look-up, the location N of the
7th harmonic is found from the value m in the array A
and by using its position in the array as the value of N.

TABLE II—Formulas for Calculating the Number of .
Operations in FFT Algorithms

Real Multiplications Real Additions

(m — 35)N + 6
@m —)N + 12

(1.5m — 2.5)N 4 4
(Bm — 3)N + 4

complex inputs
real inputs

Register Transfer Module FFT Processor 713

0] MULTIPLY 256
e A/D | u‘“;l | [256 POINTS POINT
ANALOG 110 KHz | L &[=1BY HAMING [~ FFT
SPEECH 128 ol Iwinow
SIGNAL E[3] [vecror {
o,
256 | |a
b *
RN o2 LOG,XX
BUFFER [5331%
oo - = = = e = = e e - — e - — =
| [256 MULTIPLY 256 POINT '
1 |PoINT CEPSTRUM INVERSE FFT]
TO el IFFT | BY WEIGHTING |w— (FORMS CEPSTRUM) | 1
pOP-11 | VECTOR !
e e e e - e ———— e - J

Figure 6—FFT processor data flow. Boxed area denotes future
extension of the processor

In implementation, the sequence of locations is, for
convenience, stored separately.

Table II below compares the number of operations,
and consequently, the speed, of the conventional
Cooley-Tukey radix-2 FFT algorithm for complex
inputs, and the FFT algorithm for real inputs.’ In the
formulas N =2m, where N is the number of samples.
These formulas assume special cases such as exp (70)
are calculated as simply as possible. About 14 the
number of operations are required for real inputs as for
complex inputs, owing to the elimination of redundant
calculations. As explained previously, the algorithm
can be streamlined further by sequencing through the
complex multipliers rather than across each level. A
software version of these techniques has been imple-
mented” and has achieved a real-time processing speed
of 10,300 samples/sec. This is the equivalent of one
256 point FFT every 25 msec. The minimum speech
processing speed required for this system is one 256
point FFT every 10 msec. It is evident that speeding
up the algorithm requires hardwiring the complex
calculation and address generation.

PROCESSOR DATA FLOW

Figure 6 shows the logical flow of data through the
processor. The “Future Extension” section will not be
implemented initially. Instead the log magnitude of the
spectrum will be transferred to a PDP-11. At this point
the spectral envelope can be extracted by digital
recursive filtering techniques rather than by cepstral
smoothing. This approach adequately demonstrates
the feasibility of a real-time RTM processor.

The analog speech signal is sampled at 10 kHz and
stored in a buffer. When 256 8-bit words have been
accumulated, they are weighted by a Hamming window.
A 256 point FFT is then performed on these weighted
samples. This results in only 129 complex values since

TABLE IIT—Description of RTM Modules

Module Function
K.bus controls asynchronous timing of sequential
) operations
T.a/d analog to digital converter
DM.bool boolean flags
DM.const 4 word read only memory
DM.gpa general purpose arithmetic unit

DM.ii general purpose input interface

DDM.index FFT address generator

DM.mult multiply unit

DM.oi general purpose output interface
DM.pdp-11 PDP-11 interface

DM.tr temporary storage register

M.array read/write memory; ~2 usec access time

M.sp read/write scratch pad memory; ~500 nsee
access time

the FFT algorithm for real-valued inputs generates
harmonics only through the folding frequency. The
binary logarithm of the magnitude of each of these 129
complex values is then calculated and the result trans-
ferred to a PDP-11.

During processing, the buffer must continually store
the input samples. After the third group of 128 samples
has been stored, samples 128 thru 383 are weighted by
the window and processed. Although a 256 point FFT
is performed, the window is shifted by only 128 words
éach time thus including each sample in 2 FFT cal-
culations, each time with a different weighting factor.

SPEECH
SIGNAL
FFT
e Huose || Foy
INTERFACE INTERFACE
ARITHMETIC ARITHMETIC ARITHMETIC
|| unIT | | unIT | | unIT
1 ADDER 1 ADDER 2 ADDERS
1 MULTIPLIER 1 MULTIPLIER
-~ MEMORY | | H MEMORY | | H vemory]
| BooLEAN BOOLEAN | [BOOLEAN
FLAGS FLAGS FLAGS
BUS TO BUS || |{BUS TO BUS | |
INTERFACE INTERFACE
1 BUS 2 BUS 3

Figure 7—Block diagram of FFT processor
Bus 1 samples and buffers speech signal. Bus 2
performs FFT. Bus 3 calculates binary logarithm and
interfaces to a PDP-11

714 Fall Joint Computer Conference, 1972

~K.bus -K.bus — K.bus

r—= —=°

:ANALOG 1

 SPEECH 1 -DM. index | DM.pdp-11

1SIGNAL |

L }. —-— -l t

TO

T.a/d =DM, tr PDP-11
DM, 11 ~DM. const — DM. gpa
— DM. gpa -DM. gpa — DM. gpa
- OM. mult ~DM. mult — DM.bool
~DM.bool ~DM.bool — M. array

’ (256 words)
—DM. ol ~DM. oi
L L B M.Sp
DM.ii— DM, ii=

—M. array —~M. array

(512 words) (512 words)
—~M.sp }-M.sp

BUS 1 BUS 2 BUS 3

Figure 8—RTM structure of FFT processor. The modules are
described in Table IIT

The first FFT thus operates on samples 0-255, the
second FFT on samples 128-383, the third on 256-511,
etc. In the actual machine a 384 word ring buffer
memory is used to achieve the sequencing of the blocks
of 128 samples.

The time constraints on the system are easily tabu-

bus
A= bus DM.mult
—
B— bus ,
—
bus~(AxBIK30:153 | A <I30>
B <15:0>

Figure 9—(a) DM.mult—multiply unit

bus
- m
bus- Al | b end
bus-A2
bus—A3 Al <7:0>
bus—A4 Tl A2 <7:0>
initiaglize A3 <7:0>
increment | A4 <7:0>
(b) DM.index — FFT address generator. The

DM.index control lines are described in Table IV

lated. In the 12.8 msec used to sample 128 words the
following three operations must be performed:

(1) The Hamming window must be applied,
(2) The 256 point FFT performed, and
(3) The log magnitude of each harmonic calculated.

RTM LEVEL DESIGN

A block diagram of the processor structure is shown
in Figure 7. It is a three bus system with each of the
above operations performed on a separate bus. Figure 8
shows the specific RTM modules used; Table III
describes the modules.

With the exception of DM.mult and DM.index, the
data modules shown in Figure 8 are all standard RTM’s.
The functions of the two nonstandard modules are
outlined below and illustrated in Figure 9.

TABLE IV—Description of Control Lines for Indexing
Unit DM.Index

control line function

initialize initialize indexing unit

increment calculate next 4 operand addresses for complex
calculation

bus « Al load 1st address on bus

bus « A2 load 2nd address on bus

bus «— A3 load 3rd address on bus

bus « A4 load 4th address on bus

done signals-end of calculations involving one complex
multiplier

-end signals end of FFT

Register Transfer Module FFT Processor 715

Data Buffering (continuous)

Windowing —
BUS 1
Data Transfer: 1.5
bus 1 to bus 2 p—""i
FFT 6.5
Magnitude L5 BUS 2
Calculation RE—
Data Transfer: 1.5
bus 2 to bus 3 p——
Logarithm 5.3
Calculation
BUS 3

Reorder and 5.3
Data Transfer:
to PDP-11

1 Processor Cycle 12.8

1 2 3 4 5 6 7 8 9 1011 12 13
MSEC

Figure 16—Processor timing diagram

DM .mult

This module multiplies the two 16 bit positive
numbers in registers A and B. Any 16 bits of the 32 bit
result can be placed on the bus. The multiplier was
implemented using Fairchild 9344 2X4 bit multipliers.

DM index

High speed hardware indexing units for FFT operand
address generation have been presented in the literature.?
This module generates the addresses of the four operands
of every complex calculation during the FFT. It is a
hardware implementation of the recursive equations
for the FFT algorithm for real value inputs discussed
previously. It was designed to sequence through all
calculations involving one complex multiplier. Table IV
defines the control lines shown in Figure 9(b).

The four 8-bit registers, A1, A2, A3 and A4 hold the
addresses of the four operands. These registers do not
physically exist since the addresses are generated
combinatorily upon command; they are defined for
logical purposes only.

Figure 10 shows the timing diagram of the processor.
All arithmetic operations, register transfers, and
memory accesses involve use of the bus, which has a
settling time of 500 nsec. Therefore, the average speed
of any operation is 500 nsec. This value was used in
calculating the processing times shown in Figure 10.
For example, approximately 13,000 operations are
required to perform each 256 point FFT on bus 2. The
processing time, therefore, is 6.5 msee. Bus 1 is con-
tinually buffering data, however, only 1.5 msec of 1
processor cycle (12.8 msec) are spent windowing 256

samples and transferring them to bus 2. Bus 2 spends
1.5 msec simultaneously accepting data from bus 1,
calculating the magnitude of the harmonic components
and transferring the results to bus 3. 6.5 msec are spent
calculating the FFT. This leaves 4.8 msee (12.8-1.5-6.5)
of dead-time during each processor cycle; time when no
processing occurs on bus 2. Bus 3 spends 1.5 msec
accepting data from bus 2, and 5.3 msec simultaneously
calculating the logarithm of 129 samples and trans-
ferring them to the PDP-11. This leaves 6 msec of dead-
time on bus 3. It is clear that bus 2 carries the heaviest
processing load; therefore, bus 2 dead-time determines
that a speed margin of 4.8 msec exists; that is, the
processor completes processing each set of 256 samples
4.8 msec faster than needed to maintain real-time
operation.

Accuracy

The question of accuracy always arises for a processo.
operated in fixed point mode. As noted previously,
distribution of the 1/N normalization factor over the
entire transform constrains the magnitudes of the
operands at each level to prevent overflows. The only
overflow possibility occurs during the calculation of the
magnitude of the Fourier coefficients. When overflow
occurs (positive or negative), the largest (positive or
negative) number will be chosen.

Simulation runs to determine the effect of multiplier
size on accuracy were conducted. A 16X 16 bit multi-
plier was used in conjunction with the fixed point FFT
described to process actual speech signal samples. For
audible speech, accuracy of 1 percent relative mean
square error was achieved when compared to floating
point results. The same simulation using a 12X12 bit
multiplier resulted in an error of 6 percent. For signals
of small magnitude (such as the signal generated by
silence) the error for the 16 X16 bit multiplier rose to
25 percent; however, this is acceptable for processing
the silence signal. For comparison, previous published
accuracy results for a 16X 16 bit multiplier and similar
FFT algorithm? showed a maximum error of 40.012
percent fullscale with a standard deviation of 40.004
percent fullscale. On the basis of these results, the
12X 12 bit multiplier was considered too inaccurate;
therefore, the 16 X16 bit multiplier was chosen.

RTM control

RTM control logic is designed with 2 basic modules:

1. Ke: a module which initiates arithmetic opera-

tions, data transfers between registers, and
memory read/write cycles.

716 | Fall Joint Computer Conference, 1972

2. Kb: a module which chooses a control branch
based on the value of a boolean flag.

With these modules the control for executing an
algorithm can be specified in a manner quite similar to
programming the algorithm in a high level programming
language. This greatly simplifies the design of the
control, thus resulting in a significant reduction in
design time.

This concept can easily be illustrated by investigating
a section of bus 2 control. This particular section con-
trols the complex calculation for the degenerate case of
W9, that is, when the complex multiplier is 14-70. For
this case the equations shown in Figure 5 reduce to

o' =ate¢
b'=b+d
¢d=a—c¢

&'=d—b

A and B are general purpose arithmetic unit registers;
INDEX is a storage register used for sequencing the
counter through the 64 complex multipliers; ONE is a
constant generator containing a “1”’; and MA1 and
MBI are memory address and buffer registers, respec-
tively. The control for this series of complex calcula-
tions is then:

Ke (L«1; initialize)
Ke (INDEX«0)

—>

Kb (done)
l0 Ll
Ke (MA1<A1; read)
Ke (A—MB1)
Ke (MA1<A2; read)
Ke (B—MBI1)
Ke (MBl—(A—B)/2; write)
Ke (MAl«Al)
Ke (MBl—(A+B)/2; write)
Ke (MA1+A3; read)
" Ke (B—MB1)
Ke (MA1<A4; read)
Ke (A—MB1)
Ke (MBl<(A—B)/2; write)
Ke (MA1+A3; increment)
Ke (MB1l—(A+B)/2; write)

(next control section)

By dividing the results of each complex calculation by

2, the 1/N normalization factor can be distributed over
the entire calculation.

The control section for the remaining complex cal-
culations is, of course, more complex requiring 46 Ke
and 7 Kb, but its design and implementation remain
straightforward. To accomplish control of all operations
on bus 2, including accepting data from bus 1, executing
the FFT, calculating the magnitudes of the Fourier
coefficients, and transferring data to bus 3, about 120 Ke
and 20 Kb were used. ‘

FUTURE EXTENSIONS

The speech processing application for this processor
involves an initial Fourier transform, a second Fourier
transform to obtain the cepstrum and an inverse
Fourier transform. Figure 6 shows data flow for the
proposed final form of the pipeline processor.

The present system is memory limited because 14 bus
transfers in and out of memory are required for every
complex calculation. Approximately 500 nsec are
required for a bus transfer; 250 nsec to load data on the
bus and 250 nsec to read data from the bus. Faster
memory and bus systems can decrease this portion of
the processing time. The processor fulfills both the
overall goal of a modular FFT computer to meet the
minimum processing rate of 10K data samples/sec,
and attain accuracy of 1 percent relative mean square
error necessary for speech analysis. This was done using
existing RTM’s with only 2 new modules required.

It should be emphasized that while the processor
performs a specialized function (calculating the FFT),
the RTM modules themselves, with the exception of
DM.index, are general and can be used to implement
any processor. In fact, since only the back plane wiring
determines the characteristics of the proeessor, one set
of RTM modules can be shared among many processors,
if the processors will not be used simultaneously. This
can result in substantial savings over the purchase or
construction of several complete processors.

Along these lines, it would be advantageous to
develop more complex but still general RTM modules.
Specifically, a generalized micro-programmed LSI RTM
module could be coded to implement the entire complex
calculation, the FFT address generator, or any other
algorithm on a single card. The complex calculation is
an area where the system’s speed can be significantly
improved. At present, 46 bus transfers are required for
each complex calculation. This number could be re-
duced by a factor of 3 by constructing one card to
perform the entire complex calculation. The present

Register Transfer Module FFT Processor 717

system’s specifications did not require such improve-
ments and the RTM design concepts were used to
investigate various system designs using existing
modules rather than constructing an entire system from
the start.

SUMMARY

This paper has reviewed the basic FFT algorithms and
presented a method by which a relatively sophisticated
piece of hardware such as an FFT processor could be
designed at the register transfer level in a much shorter
time than required in a conventional gate level design.
The simplicity of this modular construction has per-
mitted a fairly in-depth view of the processor. The
resultant product and its method of implementation are
rather unique in that they combine the convenience of
a control logic that is similar in structure to software
algorithms with the processing speed of a completely
hard-wired algorithm.

ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of Lee
Bitterman, and Professors Gordon Bell and Raj Reddy

of CMU in the design and implementation of this
FFT processor.

REFERENCES

1 C G BELL et al
The description and use of register transfer modules (RTM’s)
IEEE Transactions on Computers Vol C-21 1972

2 R W SCHAFER L R RABINER
System for automatic formant analysis of voiced speech
The Journal of the Acoustical Society of America Vol 47
No 2 1970

3 E L HALL et al
Generation of products and quotients using approximate binary
logarithms for digital filtering application
IEEE Transactions on Computers Vol C-19 1970

4 G D BERGLAND
A guided tour of the fast fourier transform
IEEE Spectrum Vol 6 1969

5 G D BERGLAND
A fast fourier transform algorithm for real valued series
Communications of the ACM Vol 11 1968

6 B GOLD et al
The FDP, a fast programmable signal processor
IEEE Transactions on Computers Vol C-20 No 1 1971

7 J W HARTWELL
A procedure for implementing the fast fourier transform on
small computers
IBM Journal of Research and Development Vol 15 1971

8 W W MOYER
A high-speed indexing unit for FFT algorithm implementation
Computer Design Vol 10 No 12 1971

A systematic approach to the des1gn of digital

bussmg structures *

by KENNETH J. THURBER, E. DOUGLAS JENSEN, and LARRY A. JACK

Honeywell, Inc.
St. Paul, Minnesota

and

LARRY L. KINNEY, PETER C. PATTON, and LYNN C. ANDERSON

University of Minnesota
Minneapolis, Minnesota

INTRODUCTION

Busses are vital elements of a digital system—they
interconnect registers, functional modules, subsystems,
and systems. As technological advances raise system
complexity and connectivity, busses are being recog-
nized as primary architectural resources which can fre-
quently be the limiting factor in performance, modu-
larity, and reliability. The traditional view of bussing
as just an ad hoc way of hooking things together can no
longer be relied upon to produce even viable much less
cost-effective solutions to these increasingly sophisti-
cated interconnect problems.

This paper formulates a more systematic approach
by abstracting those bus parameters which are com-
mon to all levels of the system hierarchy. Every bus,

- whether it connects registers or processors, can be char-
acterized by such factors as type and number, control
method, communication mechanism, data transfer con-
ventions, width, etc. Evaluating these parameters in
terms of the preliminary functional requirements and
specifications of the system constitutes an efficient
procedure for the design of a cost-effective bus struc-
ture.

BUS STRUCTURE PARAMETERS

Each of these bus structure parameters involves a
variety of interrelated tradeoffs, the most important of
which are considered below.

* This work was supported in part by the Naval Air Development
Center, Warminster, Pa., under Navy contract number N62269-
72-C-0051.

719

Type and number of busses

Busses can be separated into two generic types: dedi-
cated, and nondedicated.

Dedicated busses

A dedicated bus is permanently assigned to either
one function or one physical pair of devices. For ex-
ample, the Harvard class computer characterized by
Figure 1 has two busses, each of which is dedicated ac-
cording to both halves of the definition. One bus sup-
plies procedure to the processor, the other provides
data. If there were multiple procedure memory modules
on the procedure bus, that bus would be functionally
but not physically dedicated. The concept of “func-
tion” is hierarchical rather than atomic; in the sense
that the procedure bus of Figure 1 carries both ad-
dresses and operands, it could be viewed as physically
but not functionally dedicated. This dichotomy is re-
versed in Figure 2, which illustrates another form of
Harvard class machine. In this case, one bus is func-
tionally dedicated to addresses and the other to oper-
ands. They are undedicated from the standpoint of
data/procedure separation, and physically undedicated
as well.

The principal advantage of a dedicated bus is high
throughput, because there is little, if any, bus conten-
tion (depending on the type and level of dedication).
As a result, the bus controller can be quite simple com-
pared to that of a non-dedicated bus. Also, portions of
the communication mechanism which must be explicit
in undedicated busses may be integral parts of the

720 Fall Joint Computer Conference, 1972

PROCEDURE BUS

I T

PROCEDURE DATA
PROCESSOR MEMORY MEMORY
DATA BUS

Figure 1—Harvard class computer with dedicated procedure
and data busses.

devices on a dedicated bus: addresses may be unneces-
sary, and the devices may automatically be in syne.

A system may include as many undedicated busses
as its logical structure and data rates require, to the ex-
treme of one or more busses between every pair of de-
vices (Figure 3).

A major disadvantage of dedicated busses is the cost
of the cables, connectors, drivers, etc., and of the
multiple bus interfaces (although the interfaces are
generally less complex than those for nondedicated
busses). If reliability is a concern, the busses must be
replicated to avoid potential single-point failures.
Dedicated busses do not often support system modu-
larity, because to add a device frequently involves
adding new interfaces and cables.

Non-dedicated busses

Non-dedicated busses are shared by multiple func-
tions and/or devices. As pointed out earlier, busses may
be functionally dedicated and physically non-dedicated,
or vice versa. The Princeton class computer of Figure 4
illustrates a commonly encountered type of single bus

ADDRESS BUS

PROCEDURE DATA
MEMORY MEMORY

T T

OPERAND BUS

PROCESSOR

Figure 2—Harvard class computer with dedicated address
and operand busses

Figure 3—Adding a device to a non-dedicated bus structure

structure which is not dedicated on either a functional
or a physical basis. The interesting case of multiple,
system-wide, functionally and physically non-dedicated
busses is seen in Figure 5. Here every device can com-
municate with every other device using any bus, so the
failure of a bus interface to some device simply re-
duces the number of busses (but not devices) remain-
ing available to that device.

The crossbar matrix is a form of non-dedicated bus
structure for connecting any element of one device
class (such as memories) to any element of another
(such as processors). It can be less efficiently used to
achieve complete connectivity between all system de-
vices. The crossbar can be very complex to control, and
the number of switches increases as the square of the
number of devices, as shown in Figure 6. It also suffers
from the disability that failure of a crosspoint leaves no
alternative path between the corresponding devices.

By adding even more hardware, the crossbar switch
can be generalized to a code-activated network (anal-
ogous to the telephone system) in which devices seek
their own paths to each other.

PROCESSOR MEMORY 1/0

Figure 4—Princeton class computer with a single
non-dedicated bus

Systematic Approach to Design of Digital Bussing Structures 721

PROCESSOR PROCESSOR MEMORY | § MEMORY /0

Figure 5—Multiple, system-wide, non-dedicated busses

Another relatively unconventional non-dedicated bus
structure is the permutation or sorting network which
can connect N devices to N other devices. The sorting
network may be implemented with memory or gating,
but in either case if all N1 permutations are allowed, the
hardware is extensive for anything but very small N’s.

Non-dedicated busses offer modularity as their main
advantage, in that devices generally may be added to
them more easily than to dedicated busses. Multiple
busses such as those in Figure 5 not only increase band-
width but also enhance reliability, rendering the system
fail-soft. While non-dedicated busses avoid the pro-
liferation of cables, connectors, drivers, ete., they do
exact a toll in usage conflict. Bus allocation requires
logic and time, and if this time cannot be masked by
data transfers, the bus bandwidth and/or assignment
algorithm may have to be compromised. Furthermore,

MEM MEM MEM

prog——¢———6—+—¢~

PROC & ©— o—

-

Figure 6—Adding devices to a crossbar bus

the devices which desire but do not obtain the bus must
wait for another opportunity to contend for it.

The communication technique is usually more com-
plex for non-dedicated busses, because devices must be
explicitly addressed and synchronized. ’

Bus control techniques

When a bus is shared by multiple devices, there must
be some method whereby a particular unit requests and
obtains control of the bus and is allowed to transmit
data over it. The major problem in this area is resolution
of bus request conflicts so that only one unit obtains
the bus at a given time. The different control schemes
can be roughly classified as being either centralized or
decentralized. If the hardware used for passing bus con-
trol from one device to another is largely concentrated
in one location, it is referred to as centralized control.
The location of the hardware could be within one of the
devices which is connected to the bus, or it could be a
separate hardware unit. On the other hand, if the bus
control logic is largely distributed throughout the dif-
ferent devices connected to the bus, it is called de-
centralized control.

The various bus control techniques will be described
here in terms of distinct control lines, but in most cases
the equivalent functions can be performed with ecoded
transfers on the bus data lines. The basic tradeoff is
allocation speed versus total number of bus lines.

Centralized bus control

With centralized control, a single hardware unit is
used to recognize and grant requests for the use of the
bus. At least three different schemes can be used, plus
various modifications or combinations of these:

o Daisy Chaining
+ Polling
¢ Independent Requests.

Centralized Daisy Chaining is illustrated in Figure 7.

BUS »| DEVICE | ___JY DEVICE
AVAILABLE 0 N
BUS
CONTROLLER
BUS REQUEST e y
<BUS BUSY Yy ..

Figure 7—Centralized bus control: daisy chain

722 Fall Joint Computer Conference, 1972

peEviCE |-——| DEVICE
Y ﬁ"-
BUS REQUEST y] - }
BUS
CONTROLLER | BUS BUSY v . v
POLL COUNT .

Figure 8a—Centralized bus control: polling with a global counters

Each device can generate a request via the common
Bus Request line. Whenever the Bus Controller re-
ceives a request on the Bus Request line, it returns a
signal on the Bus Available line. The Bus Available line
is daisy chained through each device. If a device re-
ceives the Bus Available signal and does not want con-
trol of the bus, it passes the Bus Available signal on to
the next device. If a device receives the Bus Available
signal and is requesting control of the bus, then the
Bus Available signal is not passed on ‘to the next
device. The requesting device places a signal on the
Bus Busy line, drops its bus request, and begins its
data transmission. The Bus Busy line keeps the Bus
Available line up while the transmission takes place.
When the device drops the Bus Busy signal, the Bus
Available line is lowered. If the Bus Request line is
again up, the allocation procedure repeates.

The Bus Busy line can be eliminated, but this essen-
tially converts the bus control to a decentralized Daisy
Chain (as discussed later).

The obvious advantage of such a scheme is its simplic-
ity: very few control lines are required, and the number
of them is independent of the number of devices; hence,
additional devices can be added by simply connecting
them to the bus.

A disadvantage of the Daisy Chaining scheme is its
susceptibility to failure. If a failure occurs in the Bus
Available circuitry of a device, it could prevent suc-
ceeding devices from ever getting control of the bus or
it could allow more than one device to transmit over
the bus at the same time. However, the logic involved
is quite simple and could easily be made redundant to
increase its reliability. A power failure in a single device
or the necessity to take a device off-line can also be
problems with the Daisy Chain method of control.

Another disadvantage is the fixed priority structure
which results. The devices which are “closer” to the
Bus Controller always receive control of the bus in
preference to those which are ‘“further away”. If the

closer devices had a high demand for the bus, the further
devices could be locked out.

Since the Bus Available signal must sequentially
ripple through the devices, this bus assignment mecha-
nism can also be quite slow.

Finally, it should be noted that with Daisy Chaining,
cable lengths are a function of system layout, so adding,
deleting, or moving devices is physically awkward.

Figure 8a illustrates a centralized Polling system. As
in the centralized Daisy Chaining method, each device
on the bus can place a signal on the Bus Request line.
When the Bus Controller receives a request, it begins
polling the devices to determine who is making the re-
quest. The polling is done by counting on the polling
lines. When the count corresponds to a requesting
device, that device raises the Bus Busy line. The con-
troller then stops the polling until the device has com-
pleted its transmission and removed the busy signal.
If there is another bus request, the count may restart
from zero or may be continued from where it stopped.

Restarting from zero each time establishes the same
sort of device priority as proximity does in Daisy Chain-
ing, while continuing from the stopping point is a round-
robin approach which gives equal opportunity to all
devices. The priorities need not be fixed beeause the
polling sequence is easily altered.

The Bus Request line can be eliminated by allowing
the polling counter to continuously eycle except while
it is stopped by a device using the bus. This alternative
impacts the restart (i.e., priority) philosophy, and the
average bus assignment time.

Polling does not suffer from the reliability or physical
placement problems of Daisy Chaining, but the num-
ber of devices in Figure 8a limited by the number of
polling lines. Attempting to poll bit-serially involves
synchronous communication techniques (as described
later) and the attendant complications.

Figure 8b shows that centralized Polling may be
made independent of the number of devices by placing
a counter in each device. The Bus Controller then is
reduced to distributing clock pulses which are counted

DEVICE
0

CLOCK L ‘

BUSY (INHIBIT) 3 !

-

DEVICE
N

OSCILLATOR

Figure 8b—Centralized bus control: polling with local counters.

Systematic Approach to Design of Digital Bussing Structures 723

by all devices. When the count reaches the code of a
device wanting the bus, the device raises the Busy line
which inhibits the clock. When the device completes
its transmission, it removes the Busy signal and the
counting continues. The devices can be serviced either
in a round-robin manner or on a priority basis. If the
counting always continues cyclically when the Busy
signal is removed, the allocation is round-robin, and if
the counters are all reset when the Busy signal is re-
moved, the devices are prioritized by their codes. It is
also possible to make the priorities adaptive by altering
the codes assigned to the devices. The clock skew
problems tend to limit this technique to small slow
systems; it is also exceptionally susceptible to noise and
clock failure.

Polling and Daisy Chaining can be combined into
schemes where addresses or priorities are propagated
between devices instead of a Bus Available signal. This
adds some priority flexibility to Daisy Chaining at the
expense of more lines and logic.

The third method of centralized bus control, Inde-
pendent Requests, is shown in Figure 9. In this case
each device has a separate pair of Bus Request and Bus
Granted lines, which it uses for communicating with
the Bus Controller. When a device requires use of the
bus, it sends its Bus Request to the controller. The con-
troller selects the next device to receive service and
sends a Bus Granted to it. The selected device lowers
its request and raises Bus Assigned, indicating to all
other devices that the bus is busy. After the transmis-
sion is complete, the device lowers the Bus Assigned
line and the Bus Controller removes Bus Granted and
selects the next requesting device.

The overhead time required for allocating the bus can
be shorter than for Daisy Chaining or Polling since all
Bus Requests are presented simultaneously to the Bus
Controller. In addition, there is complete flexibility
available for selecting the next device for service. The
controller can use prespecified or adaptive priorities, a
round-robin scheme, or both. It is also possible to dis-

DEVICE DEVICE
0 N

b)

BUS REQUEST 0

BUS BUS GRAINTEDO
CONTROLLER ‘

ol i

BUS REQUEST N

BUS GRANTED N

" BUS ASSIGNED

Figure 9—Centralized bus control: independent requests

BUS :
—p1 DEVICE O — — < DEVICE N
AVAILABLE
BUS BUS
REQgEST REQINJEST

Figure 10a—Decentralized bus control: daisy chain 1

able ‘requests from a particular device which, for
instance, is known or suspected to have failed.

The major disadvantage of Independent Requests is
the number of lines and connectors required for control.
Of course, the complexity of the allocation algorithm
will be reflected in the amount of Bus Controller hard-
ware.

Decentralized bus control

In a decentrally controlled system, the control logic is
(primarily) distributed throughout the devices on the
bus. As in the centralized case, there are at least three
distinet schemes, plus combinations and modifications
of these: '

¢ Daisy Chaining
¢ Polling,
¢ Independent Requests

A decentralized Daisy Chain can be constructed
from a centralized one by omitting the Bus Busy line
and connecting the common Bus Request to the “first”
Bus Available, as shown in Figure 10a. A device requests
service by raising its Bus Request line if the incoming
Bus Available line is low. When a Bus Available signal
is received, a device which is not requesting the bus
passes the signal on. The first device which is requesting
service does not propagate the Bus Available, and keeps
its Bus Request up until finished with the bus. Lowering
the Bus Request lowers Bus Available if no successive
devices also have Bus Request signals up, in which case
the “first”’ device wanting the bus gets it. On the other
hand, if some device ‘“beyond” this one has a Bus Re-
quest, control propagates down to it. Thus, allocation is
always on a round-robin basis.

A potential problem exists in that if a device in the
interior of the chain releases the bus and no other de-
vice is requesting it, the fall of Bus Request is propagat-
ing back toward the “first” device while the Bus Avail-
able signal propagates “forward.” If devices on both

724 Fall Joint Computer Conference, 1972

DEVICE DEVICE DEVICE
0 1 N

\

BUS AVAILABLE

Figure 10b—Decentralized bus control: daisy chain 2

sides of the last user now raise Bus Request, the one to
the “right” will obtain the bus momentarily until its
Bus Available drops when the “left”” device gets control.
This dilemma can be avoided by postponing the bus as-
signment until such races have settled out, either asyn-
chronously with one-shots in each device or with a
synchronizing signal from elsewhere in the system.

A topologically simpler decentralized Daisy Chain is
illustrated in Figure 10b. Here, it is not possible to un-
ambiguously specify the status of the bus by using a
static level on the Bus Available line. However, it is
possible to determine the bus status from transitions on
the Bus Available line. Whenever the Bus Available
coming into a device changes state and that device

needs to use the bus, it does not pass a signal transition -

on to the next device; if the device does not need the
bus, it then changes the Bus Available signal to the next
device. When the bus is idle, the Bus Available signal
oscillates around the Daisy Chain. The first device
to request the bus and receive a Bus Available signal
change' terminates the oscillation and takes control of
the bus. When the device is finished with the bus, it
“causes a transition in Bus Available to the next device.

Dependence on signal edges rather than levels renders
this approach somewhat more susceptible to noise than

DEVICE ‘ DEVICE
o |- o= N

¥ N X

POLLING CODE

BUS AVAILABLE

¥_ BUS ACCEPT L 4

Figure 11—Decentralized bus controlrz polling

the previous one. This problem can be minimized by -
passing control with a request/acknowledge type of
mechanism such as described later for communication,
although this slows bus allocation. Both of these de-
centralized Daisy Chains have the same single-point
failure mode and physical layout liabilities as the
centralized version. Specific systems may prefer either
the (centralized) priority or the (decentralized) round-
robin algorithm, but they are equally inflexible (albeit
simple). :

Decentralized Polling can be performed as shown in
Figure 11. When a device is willing to relinquish control
of the bus, it puts a code (address or priority) on the
polling lines and raises Bus Available. If the code
matches that of another device which desires the bus,
that device responds with Bus Accept. The former
device drops the polling and Bus Available lines, and
the latter device lowers Bus Accept and begins using
the bus. If the polling device does not receive a Bus
Accept. (a Bus Refused line could be added to dis-

DEVICE
0

DEVICE
N

’

BUS REQUESTS

BUS ASSIGNED v

Figure 12—Decentralized bus control: independent requests

tinguish between devices which do not desire the bus
and those which are failed), it changes the code ac-
cording to some allocation algorithm (round-robin or
priority) and tries again. This approach requires that
exactly one device be granted bus control when the
system is initialized. Since every device must have the
same allocation hardware as a centralized polling Bus
Controller, the decentralized version utilizes substanti-
ally more hardware. This buys enhanced reliability in
that failure of a single device does not necessarily
affect operation of the bus.

Figure 12 illustrates the decentralized version of
Independent Requests. Any device desiring the bus
raises its Bus Request line, which corresponds to its
priority. When the current user releases the bus by
dropping Bus Assigned, all requesting devices examine
all active Bus Requests. The device which recognizes
itself as the highest priority requestor obtains control
of the bus by raising Bus Assigned. This causes all
other requesting devices to lower their Bus Requests

Systematic Approach to Design of Digital Bussing Structures 725

(and to store the priority of the successful device if a
round-robin algorithm is to be accomodated).

The priority logic in each device is simpler than that
in the centralized counterpart, but the number of lines
and connectors is higher. If the priorities are fixed
rather than dynamic, not all request lines go to all
devices, so the decentralized case uses fewer lines in
systems with up to about 10 devices. Again, the de-
centralized method offers some reliability advantages
over the centralized one.

The clock skew problems limit this process to small
dense systems, and it is exceptionally suseceptible to
noise and elock failure.

Bus communication technigues

Once a device has obtained control of a bus, it must
establish contact with the desired destination. The in-
formation required to do this includes

e Source Address
Destination Address
Communication Class
Action Class.

The source address is often implicit, and the destina-
tion address may be also, in the case of a dedicated bus.
Communication class refers to the type of information
to be transferred: e.g., data, command, status, interrupt
etc. This too might be partially or wholly implicit, or
might be merged with the action class, which deter-
mines the function to be performed, such as input,
output, etc. After this initial coordination has been
accomplished, the actual communication can proceed.
Information may be transferred between devices syn-
chronously, asynchronously, or semisynchronously.

Synchronous bus communication

Synchronous transmission techniques are well under-
stood and widely used in communication systems, pri-
marily because they can efficiently operate over long
lengths of cable. A synchronous bus is characterized by
the existence of fixed, equal-width time slots which are
either generated or synchronized by a central timing
mechanism.

The bus timing can be generated globally or both
globally and locally. A globally timed bus contains a
central oscillator which broadcasts clock signals to all
units on the bus. Depending on the logical structure and
physical layout of the bus, clock skew may be a serious
problem. This can be somewhat alleviated by distribut-
ing a globally generated frame signal which synchro-

nizes a local clock in each device. The local clocks drive
counters which are decoded to identify the time slot as-
signed to each device. A sync pulse occurs every time
the count cycle (i.e., frame) restarts. The device clocks
must be within the initial frequency and temperature
coefficient tolerances determined by the bus timing
characteristics. Skew can still exist if a separate frame
syne line is used, but can be avoided by putting frame
sync in the data. The sync signal then must be separable
from the data, generally through amplitude, phase, or
coding characteristics. If the identifying characteristic
is amplitude, the line drivers and receivers are much
more complex analog circuits than those for simple bi-
nary data. If phase is used, the sync signal must be
longer than a time slot, which costs bus bandwidth and
again adds an analog dimension to the drivers and re-
ceivers. If the syne signal is coded as a special binary
sequence, it could be confused with normal data, and
can require complex decoders.

All of the global and global/local synchronlzatlon
techniques are quite subject to noise errors.

There are two basic approaches to synchronous
busses: the time slots may be assigned to devices on
either a dedicated or non-dedicated basis. A mix of both
dedicated and undedicated slots can also be used. If
time slots are dedicated, they are permanently allocated
to a device regardless of how frequently or infrequently
that device uses them. Each device on the bus is allowed
to communicate on a rotational (time division multi-
plex) basis. The only way that any priority can be es-
tablished is by assigning more than one slot to a device
(sometimes call super-commutation). More than one
device may be assigned to a single time slot by sub-
multiplexing (subcommutating) slower or mutually ex-
clusive devices.

Generally, not all devices will wish to transmit at
once; system requirements may not even require or
permit it. If any expansion facilities for additional de-
vices are provided, many of the devices may not even
be implemented on any given system. These two factors
tend to waste bus bandwidth, and lowering the band-
width to an expected “average” load may risk unac-
ceptable conflicts and delays in peak traffic periods.

Another difficulty that reduces throughput on a dedi-
caded time slot bus is that devices frequently are not
all the same speed. This means that if a device operates
slower than the time slot rate, it cannot run at its full
speed. The time slot rate could be selected to match the
rate of the slowest device on the bus, but this slows
down all faster devices. Alternatively, the time slot
rate can be made as fast as the fastest device on the bus,
and buffers incorporated into the slower devices. De-
pending on the device rate mismatches and the length
of data blocks, these buffers could grow quite large. In

726 Fall Joint Computer Conferencey, 1972

addition, the buffers must be capable of simultaneous
input and output (or one read and one write in a time
slot period), or else the whole transfer is delayed until
the buffer is filled. Another approach is to run the bus
slower than the fastest device and assign multiple time
slots to that device, which complicates the control and
wastes bus bandwidth if that device is not always trans-
ferring data. Special logic must also be included if
burst or block transfers are to be permitted, since a
device normally does not get adjacent time slots.

For reliability, it is generally desirable that the receiv-
ing device verify and acknowledge correct arrival of the
data. This is most effectively done on a word basis unless
the physical nature of the transmitting device precludes
retry on anything other than a complete block or mes-
sage. If a synchronous time slot is wide enough to allow
a reply for every word, then data transmission will be
slower than with an asynchronous bus because the time
slots would have to be defined by the slowest device on
the bus. One solution is to establish a system convention
that verification is by default, and if an error does occur,
a signal will be returned to the source device N (say
two) time slots later. The destination has time to do the
validity test without slowing the transfer rate; however,
the source must retain all words which have been trans-
mitted but not verified.

Non-dedicated time slots are provided to devices
only as needed, which improves bus utilization effi-
ciency at the cost of slot allocation hardware. Block
transfers and priority assignment schemes are possible
if the bus assignment mechanism is fast enough. The
device speed and error checking limitations of the
dedicated case are also shared by non-dedicated sys-
tems.

Asynchronous bus communication
Asynchronous bus communieation techniques fall
into two general categories: One-Way Command, and

Request/Acknowledge. A third case is where clocking
information is derived from the data itself at the desti-

onta = -

DATA READY

Figure 13—Asynchronous, source-controlled, one-way
command communication

DATA

DATA
REQUEST

y_

L,

Figure 14—Asynchronous, destination-controlled, one-way
command communication

nation (using phase modulation, ete.) ; thisis not treated
here because it is primarily suited to long-distance bit-
serial communications applications and is well docu-
mented elsewhere.

One-Way Command refers to the fact that the data
transfer mechanism is completely controlled by only
one of the two devices communicating—once the trans-
fer is initiated, there is no interaction (except, perhaps,
for an error signal).

A One-Way Command (OWC) interface may be con-
trolled by either the source or the destination device.

With a source-controlled OWC interface, the trans-
mitting device places data on the bus, and signals Dafa
Ready to the receiving device, as seen in Figure 13.
Timing of Data Ready is highly dependent on imple-
mentation details, such as exactly how it is used by the
destination device. If Data Ready itself directly strobes
in the data, then it must be delayed long enough (&)
for the data to have propagated down the bus and
settled at the receiving end before Data Ready arrives.
Instead of “pipelining” data and Data Ready, it is
safer to allow the data to reach the destination before
generating Data Ready, but this makes the transfer
rate a function of the physical distance between devices.
A better approach is to make Data Ready as wide as
the data (i.e., ty=8=0), and let the receiving device
internally delay before loading. ¢, is the time required
either for the source device to reload its output data
register, or for control of the bus to be reassigned.

The principal advantages of the source-controlled
OWC interface are simplicity and speed. The major dis-
advantages are that there is no validity verification
from the destination, it is difficult and inefficient to
communicate between devices of different speeds, and
noise pulses on the Data Ready line might be mistaken
for valid signals. The noise problem can be minimized

Systematic Approach to Design of Digital Bussing Structures 727

by proper timing, but usually at the expense of transfer
rate.

The validity check problem can be avoided with a
destination-controlled OWC interface, such as shown
in Figure 14. The receiving device raises Data Request,
which causes the source to place data on the bus. The
destination now has the problem of deciding when to
look at the data lines, which is related to the physical
distance involved. If an error is detected in the word,
the receiving device sends a Data Error signal instead
of another Data Request, so the validity check time
may limit the transfer rate. The speed is also adversely
affected by higher initial overhead, and by twice the
number of bus propagation delays as used by the
source-controlled interface.

The Request/Acknowledge method of asynchronous
communication can be separated into three cases: Non-
Interlocked, Half-Interlocked, and Fully-Interlocked.

DATA | -
I
I l |
DATA READY : ' : l
| | I . (I
DATA ACCEPT : : ; : ;
L 1o | I e | leg 1
R R A
| | |
e— 3 —Pf |
— 5 —»

Figure 15—Asynchronous, non-interlocked,
request/acknowledge communication

Figure 15 illustrates the Non-Interlocked method.
The source puts data on the bus, and raises Data Ready;
the destination stores the data and responds with
Data Accept, which causes Data Ready to fall and new
data to be placed on the lines. If an error is found in the
data, the receiving device raises Data Error instead of
Data Accept. This signal interchange not only provides
error control, but also permits operation between de-
vices of any speeds. The price is primarily speed, al-
though some added logic is also required. As with the
One-Way Command interface, the exact timing is a
function of the implementation. There are now two
lines susceptible to noise, and twice as many bus delays
to consider. Improper ratios of bus propagation time
and communication signal pulse widths could allow
another Data Ready to come and go while Data Accept
is still high in response to a previous one, which would
hang up the entire bus.

This can be avoided by making Data Ready remain
up until Data Accept (or Data Error) is received by the

DATA——!
!
|
DATA READY' , L-—.——
L} |
| i
DATA ACCEPT ‘ : e :
] ! i
jono w2 =t3{ I B
|

Figure 16—Asynchronous, half-interlocked,
request/acknowledge communication

source, as seen in Figure 16. In this Half-Interlocked
interface, if Data Ready comes up while Data Accept
is still high, the transfer will only be delayed. Further-
more, the variable width of Data Ready tends to pro-
tect it from noise. There is no speed penalty and very
little hardware cost associated with these improvements
over the Non-Interlocked case.

One more potential timing error is possible if Data
Accept extends over the source buffer reload period and
magks the leading edge of the next Data Ready. Figure
17 shows how this is avoided with a Fully-Interlocked
interface where a new Data Ready does not occur until
the trailing edge of the old Data Accept (or Data Error).
Also, both communication signals are now compara-
tively noise-immune. The device logic is again slightly
more complex, but the major disadvantage is that the
bus delays have doubled over the Half-Interlocked case,
nearly halving the transfer rate upper limit.

Semisynchronous bus communication

Semisynchronous busses may be thought of as hav-
ing time slots which are not necessarily fixed equal
width. On the other hand, they might also be viewed
as essentially asynchronous busses which behave
synchronously when not in use.

DATA READY

DATA ACCEPT

t1

N
I
|
|
|
I
|
|
|

|
|
12 : t3 |14
|
|

Figure 17—Asynchronous, f\ﬂly—interlocked,
request/acknowledge communication

728 Fall Joint Computer Conference, 1972

DATA

BUS AVAILABLE

Figure 18—Semisynchronous, source-controlled, one-way
command communication

Semisynchronous busses were devised to retain the
basic asynchronous advantage of communication be-
tween different speed devices, while overcoming the
asynchronous disadvantage of real-time error response
and the synchronous disadvantage of clock skew. Error
control in a synchronous system does not impede the
transfer rate because the error signal can be deferred as
many time slots as the validity test requires. This is not
possible on a conventional asynchronous bus since there
is no global timing signal available to all devices. Ac-
tually, this is true only when the bus is idle, because
while it is in use there are one or more communication
signals which may be observed by all devices. So an
asynchronous bus could defer the Data Error signal for
some N word-times as defined by whatever transfer
technique is employed. But when no device is using the
bus, these signals normally stop, so the one or more
pairs of devices which transferred the last N words have
no time reference for a deferred error response. The semi-
synchronous bus handles this problem by generating
extra communication signals which serve as pseudoclock
pulses for this purpose when the bus is idle. Only N
pulses are actually needed, but a continuous oscillation
may facilitate the restart of normal bus operation.

The location of this pseudoclock depends on the bus
control method. If the bus is centrally controlled, the
Bus Controller can detect the idle bus condition and
generate the pseudoclock signals. A decentrally con-
trolled bus requires that this function be performed by

DATA=—— | - [ﬂ_..l —
fod 1

DATA READY/ M.
BUS AVAILABLE .\1 | { |
DATA ACCEPT : — i 4 M

L I ;

il |4

le| —s-

! |

je— 13 —y

Figure 19—Semisynchronous, non-interlocked
request/acknowledge communication
(Data Ready/Bus Available)

DATA

DATA READY n = : - r'
' L»F-l)
DATA ACCEPT/ 1 [
BUS AVAILABLE L | |
(- : |
|

Figure 20—Semisynchronous, non-interlocked,
request/acknowledge communication
(Data Accept/Bus Available)

the last device to use the bus. The replication of logic
adds cost, and if this last device should fail while gen-
erating the pseudoclocks, the entire bus will be down.

Like asynchronous busses, semisynchronous busses
may be either One-Way Command or Request/
Acknowledge.

Figure 18 illustrates how the timing of a semisyn-
chronous source-controlled bus resembles that of its
asynchronous counterpart (there is no corresponding
destination-controlled case). Instead of the source
device sending a Data Ready to signal the presence of
new data, it sends a Bus Available to define the end of
its time slot and the beginning of the next. During a
time slot, the bus assignment for the following slot is
made; Bus Available then causes the next device to
place its destination address and data on the bus. The
selected destination then waits for the data to settle,
loads it, and generates another Bus Available.

Combining the function of Data Ready with that of
Bus Available (a line generally required by an asyn-
chronous bus) is a benefit which accrues to all semi-
synchronous busses. The semisynchronous One-Way
Command interface does avoid the real-time error re-
sponse, but it is still highly susceptible to noise, and
incompatible with devices of differing speeds.

DATA [| '
| 1
DATA READY/ . ;
BUS AVAILABLE ! | : |
DATA ACCEPT] i | |
| | Il sl s :

| |

i by &

I I

"—- t'l—” t3 "-—

Figure 21—Semisynchronous, half-interlocked,
request/acknowledge communication
(Data Ready/Bus Available)

Systematic Approach to Design of Digital Bussing Structures 729

DATA ——I__l » l ll

DATA ACCEPT &

}4——11 —b‘ !4—:3—'{ 4
[aaed

12—y

DATA READY/ o] 1
BUS AVAILABLE ;
|
l |

|
|
|
I
1
|

Figure 22—Semisynchronous, half-interlocked,
request/acknowledge communication
(toggling Data Ready/Bus Available)

For semisynchronous as well as asynchronous busses,
there are Non-Interlocked, Half-Interlocked, and Fully-
Interlocked Request/Acknowledge interfaces.

The Non-Interlocked interface shown in Figure 19 is
a direct extension of the One-Way Command case. It
handles devices of different speeds, but also is suscep-
tible to noise and potential hangup.

However, a semisynchronous bus using Data Ready
as Bus Available for a Non-Interlocked interface picks
up one of the liabilities of synchronous busses. The
transmitting device will not generate Bus Available
until Data Accept has been received and its word-time
is finished, which wastes bus bandwidth if a slower
source is followed by a faster one in the next time slot.
This can only be alleviated with the same sort of bus
bandwidth and buffer size trade-offs that a synchronous
bus would use to match different device speeds.

Figure 20 illustrates a scheme which solves this diffi-
culty by using Data Accept for Bus Available. This
optimizes bus bandwidth in the asynchronous sense
that the transfer rate is slaved to the speed of the re-
ceiving device. Of course, the noise and hangup prob-
lems are still present.

Since using Data Ready as Bus Available is unsuc-
cessful for Non-Interlocked interfaces, it is not surpris-

DATA 1
1

DATA READY : '
|

DATA ACCEPT/ —] !

BUS AVAILABLE Lo | : !

o e { I

| |

- - |

|3 {

[14 -]

Figure 23—Semisynchronous, half-interlocked,
request/acknowledge communication
(Data Accept/Bus Available)

DATA
2
2 (2
DATA READY/ e—d
BUS AVAILABLE | i
DATA ACCEPT ; : i :
fu !l jalels]
A
! !
— 2 —py

Figure 24—Semisynchronous, fully-interlocked,
request/acknowledge communication
(Data Ready/Bus Available)

ing that it doesn’t work in the Half-Interlocked case
either. As seen in Figure 21, t; is wasted because only
the leading edge of Data Ready is used as Bus Available.
Also, one device would try to hold Bus Available up
while another is pulling it down. The second device
could wait for the first to release the line, but skew on
the Data Accept line from the first destination to the
first and second sources would cause the wait to be
quite lengthy. Furthermore, if Data Accept must be
used by both source devices, it may as well transfer
control instead of Bus Available.

To keep from wasting ts, it might be proposed that
Bus Available simply be toggled and both edges be
utilized as in Figure 22, but the same state conflict
exists here. Toggling a Bus Available flip-flop with
Data Accept makes no more sense than both source
devices employing Data Accept, and would add time.

Thus, Data Accept must be converted to Bus Avail-
able, as shown in Figure 23. Except for a deferred error
signal, the disabilities of a conventional Half-Inter-
locked asynchronous bus continue to apply.

The same reasoning causes the Fully-Interlocked
interface of Figure 24 to be rejected for that of Figure
25, where the trailing edge of Data Accept serves as
Bus Available.

DATA —I' 1 fi I—l 2
1 1 i1 to2
1

]

DATA READY :
Vo i 14 \ 2

DATA ACCEPT/ — : {n .

BUS AVAIL !

ABLE lt1l 21 3 15! |

(I {1

X

Figure 25—Semisynchronous, fully-interlocked,
request /acknowledge communication
(Data Accept/Bus Available)

730 Fall Joint Computer Conference, 1972

Data transfer philosophies

There are five basic data transfer philosophies that
can be considered for a bus:

» Single word transfers only

o Fixed length block transfers only

Variable length block transfers only

Single word or fixed length block transfers
Single word or variable length block transfers.

(It should be noted that here the term “word” is used
functionally to denote the basic information unit on the
bus; bus width factors are covered later.)

The data transfer philosophy is directly involved with
three other major aspects of the system: the access
characteristics of the devices using the bus; the control
mechanism by which the bus is allocated (if it is non-
dedicated) ; and the bus communication techniques. Of
course, if the bus connects functional units of a com-
puter such as processors and memories, the data trans-
fer philosophy may severely impact programming,
memory allocation and utilization, ete.

Single words only

The choice of allowing only single words to be trans-
ferred has a number of important system ramifications.
First, it precludes any effective use of purely block-
oriented devices, such as disks, drums, or BORAMs.
These devices have a high latency and their principal
value lies in amortizing this time across many words in
a block. To a lesser extent, this concern also applies to
other types of devices. There can be substantial initial
overhead in obtaining access to a device: bus acquisi-
tion, bus propagation, busy device delay, priority reso-
lution, address mapping, intrinsic device access time,
ete. Prorating these against a block of words would re-
duce the effective access time.

The second factor in a single-word-only system is the
bus control method. Since a non-dedicated bus must be
reassigned to another device for each word, the alloca-
tion algorithm may have to be very fast to meet the bus
throughput specs. Even if bus assignment occurs in
parallel with data transfer, this could restrict the so-
phistication of the algorithm, the bus bandwidth, or
both. Judiciously selected parameters (speed, priorities,
etc.) conceivably could enable a bus controller to handle
blocks from a slow device on a word-by-word basis.

A single-word-only bus requires that the communica-
tion scheme operate at the word rate, whereas with
block transfers it might be possible for devices to effect
higher throughput by interchanging communication
signals only at the beginning and end of each block.

Fixed length blocks only

Bus bandwidth may be increased at the expense of
flexibility by transferring only fixed length blocks of
data. Problems arise when the bus block size does not
match that of a block-oriented device on the bus. If
the bus blocks- are smaller, some improvement is
achieved over the single-word-only bus, but not as
much as would be possible. If the bus blocks are too
large, extraneous data is transferred, which wastes bus
bandwidth and buffer space, and unnecessarily ties up
both devices. However, there are applications such as
lookaside memories where locality of procedure and
data references make effective use of a purely fixed
length block transfer philosophy.

Since the bus is assigned for entire blocks, the control
can be slower and thus simpler. Likewise, the communi-
cation validity check can be restricted to blocks because
this is the smallest unit that could be retried in case of
an error. The Data Ready aspect of communication
would have to remain on a word basis unless a self-
clocked modulation scheme is used.

Variable length blocks only

The use of dynamically variable length blocks is
significantly more flexible than the two previous ap-
proaches, because the block size can be matched to the
physical or logical requirements of the devices involved
in the transfer. This capability makes more efficient
use of bus bandwidth and device time when transferring
blocks. On the other hand, the overhead involved in
initiating a block transfer would also be expended for
single word transfers (blocks of length one). Thus, a
compromise between bandwidth and flexibility may
have to be arranged, based on the throughput require-
ments and expected average block size. An example of
such a compromise would be a system in which the sizes
of the data blocks depended on the source devices. This
avoids explicit block length specification, reducing the
overhead and improving throughput.

The facility for one-word blocks requires that the
control scheme be able to reallocate the bus rapidly
enough to minimize wasted bandwidth. Data error
response may also be required at the word rate.

Single words or fixed length blocks

In a system where there are high priority devices with
low data requirements, this might be a reasonable al-
ternative. The single word option reduces the number
of cases where the over-size block would waste band-
width, buffer space, and device availability, but it still

Systematic Approach to Design of Digital Bussing Structures 731

suffers from poor device and bus utilization efficiency
when more than one word but less than a block is
needed.

The expected mix of block and single word transfers
would be a primary influence on the selection of control
and communication mechanisms to achieve a proper
balance of cost and performance.

Single words or variable length blocks

As might be expected, the capability for both single
words and variable length blocks is the most flexible,
efficient, and expensive data transfer philosophy.
Single words can be handled without the overhead in-
volved in initializing a block transfer. Data blocks can
be sized to suit the devices and applications, which
optimizes bus usage. The necessity for reassigning the
bus as often as every word time imposes a speed con-
straint on the control method which must be evaluated
in light of the expected bus traffic statistics. If data
validity response is desired below a message level, the
choice of a communication scheme will be affected.

Bus width

The width of a bus impacts many aspects of the sys-
tem, including cost, reliability, and throughput. Basi-
cally, the objective is to achieve the smallest number of
lines consistent with the necessary types and rates of
communication.

Bus lines require drivers, receivers, cable, connectors,
and power, all of which tend to be costly compared to
logic. Connectors occupy a significant amount of physi-
cal space, and are also among the least reliable com-
ponents in the system. Reliability is often diminished
even further as the number of lines increases due to the
additional signal switching noise.

Line combination, serial/parallel conversions, and
multilevel encoding are some of the fundamental
techniques for reducing bus width. Combination is a
method of reducing the number of lines based on func-
tion and direction of transmission. Complementary
pairs of simplex lines might be replaced with single half-
duplex lines. Instead of dedicating individual lines to
separate functions, a smaller number of multiplexed
lines might be more cost effective, even if extra logic is
involved. This includes the performance of bus control
functions with coded words on the data lines.

Serial/parallel tradeoffs are frequently employed to
balance bus width against system cost and performance.
Transmitting fewer bits at a time saves lines, connectors,
drivers, and receivers, but adds conversion logic at each
end. It may also be necessary to use higher speed (and

thus more expensive) circuits to maintain effective
throughput. The serial/parallel converters at each end
of the bus can be augmented with buffers which absorb
traffic fluctuations and allow a lower bandwidth bus.
(Independent of bus width considerations, this concept
can minimize communication delays due to busy desti-
nation devices.) Bit-serial transmission generally is the
slowest, requires the most buffering and the least line
hardware, produces the smallest amount of noise, and
is the most applicable approach in cases with long lines.
Parallel transmission is faster, uses more line hardware,
generates greater noise, and is more cost-effective over
shorter distances.

Multilevel encoding is an approach which converts
digital data into analog signals on the bus. It is occa-
sionally used to increase bandwidth by sending parallel
data over a single line, but there are numerous disad-
vantages such as complexity, line voltage drops, lack of
noise immunity, ete.

THE SYSTEMATIC APPROACH

A systematic approach to the design of digital bussing
structures is outlined in Figure 26. It assumes that pre-

» SYSTEM REQUIREMENTS
AND SPECIFICATIONS

< STEP 1: TYPE AND NUMBER
OF BUSSES

'

<P STEP 2: CONTROL METHOD S«

|

4> STEP 3: COMMUNICATION <&+
TECHNIQUES

TECHNOLOGY
CONSTRAINTS

> STEP 4: DATA TRANSFER <&
' PHILOSOPHIES

|

<> STEP 5: BUS WIDTHS <+

DETAILED DESIGN

Figure 26—Outline of the systematic approach

732 Fall Joint Computer Conference, 1972

liminary. functional requirements and specifications
have been established for the system. The tradeoffs
for each bus parameter are interactive, so several itera-
tions are generally necessary. Even the system require-
ments and specifications may be altered by this feed-
back in order to achieve an acceptable bus configuration
within the technology constraints.

Step 1: Type and number of busses

This is the first and most fundamental step, and in-
volves the specification of dedicated and/or non-
dedicated busses. The factors to be considered are:
throughput; cost of cables, connectors, etc.; control
complexity; communication complexity; reliability;
modularity; and bus contention (ie., availability).

Step 2: Bus control methods

The central choice is among three centralized and
three decentralized methods. The Step 1 decision re-
garding dedicated and non-dedicated busses has a major
influence here. The other considerations are: allocation
speed; cost of cables, connectors, ete.; control complex-
ity (cost); reliability; modularity; bus contention; al-
location flexibility; and device physical placement
restrictions.

Step 3: Communication techniques

Either synchronous, asynchronous, or semisyn-
chronous communication techniques may be used, de-
pending on: throughput; cost; reliability ; mixed device
speeds; bus utilization efficiency; data transfer philoso-
phy; and bus length.

Step 4: Data transfer philosophies

This step is strongly influenced by the need for any
block-oriented devices on the bus. In addition, the data
transfer philosophy is a function of: control speed; al-
location flexibility; control cost; throughput; communi-
cation speed; communication technique; device utiliza-
tion efficiency; and (perhaps) programming and mem-
ory allocation.

Step 5: Bus width

Bus width is almost always primarily dictated by
either bus length or throughput. Other aspects of this
problem are: cost, reliability; communication tech-
nique; and communiecation speed.

CONCLUSION

Historically, many digital bus structures have simply
“occurred” ad hoc without adequate consideration of
the design tradeoffs and their architectural impacts.
This is no longer a viable approach, because systems
are becoming more complex and consequently less
tolerant of busses which are designed by habit or added
as an afterthought. The progress in this area has been
hindered by a lack of published literature detailing all
the bus parameters and design alternatives. Some as-
pects of bussing have been touched on briefly as a
subsidiary topic in computer architecture papers, and
a few concepts have been treated at great length in
the substantially different context of communications.
In contrast with these foregoing efforts, the intent of
this paper is to serve as a step towards a more systematic
approach to the entire digital bus structure problem
per se.

ANNOTATED BIBLIOGRAPHY

Although many digital designers recognize the im-
portance of bus structures, there have been no previous
papers devoted solely to this subject. When bus struc-
tures have been discussed in the literature, it has been
as a topic subsidiary to other aspects of computer
architecture. This section attempts to collect a com-
prehensive but not exhaustive selection of important
papers which deal with various considerations of bus
structure design. A guide to the bibliography is given
below so that particular facets of this material can be
explored. Additionally, each entry has been briefly an-
notated to provide information on its bus-related con-
tents. The bibliography is grouped into nine categories:
Computer Architecture/System Organization, I/0,
Sorting Networks, Multiprocessors, Type and Number
of Busses, Control Methods, Communication Tech-
niques, Data Transfer Philosophies, and Bus Width.

Computer architecture/system organization

(A2, B2, B4, D2, D3, D4, D7, D8, D9, H3, L1, L4,
L7, M4, M5, R5, S7, T4, W1, W5)

Papers in this category basically deal with the archi-
tecture of computers and systems, and with how sub-
systems relate to each other. Alternative architectures
(D2, L4, W1) and specific architectures (B2, B4, D3,
D4, D7, D8, D9, W5) are discussed. Item A2 is tutorial.
The impacts of bus structures (D2, H3, L1) and LSI
(L7, M5, R5) on systems organization are described.
87 pursues the effects of new technology on bus struc-

Systematic Approach to Design of Digital Bussing Structures 733

tures per se. Report T4 (on which this paper is based)
examines the entire bussing problem, and contains a
detailed bus design for a specific system.

1/0
(A2, C1, K4)

Several papers deal with bus structures as a subcase
of I/0 system design. K4 is a tutorial on I/0 architec-
ture with many implications on bus structure com-
munication and control. A2 discusses the relationships
among the executive, the data bus, and the remainder
of the system. C1 considers the overall architecture of
an I/0 system and its control.

Sorting networks
(B1, L6, T2, T3)

These papers deal with sorting or permuting bus
structures, Bl and L6 utilize very simple cells and
basically construct their systems from bitonic sorters.
T2 utilizes a different approach which is oriented
toward ease of implementation with shift registers. T3
employs group theory and a cellular array approach to
derive a unique network configuration.

Multiprocessors
(A1, C2, C8, C9, D1, G5)

These papers deal with the design of multiprocessor
computer systems. C9 covers the bus architecture of
multiprocessors through 1963. Al describes a multi-
processor with dual non-dedicated busses controlled by
a decentralized daisy chain. C2 discusses the relation-
ship between channel rates and memory requirements.
C8 and D1 are about multiprocessors using data ex-
changes. G5 describes a multiprocessor bus that uses
associative addressing techniques in its communication
portion.

Type and number of busses

(A1, A3, B2, B6, D6, D10, F2, G1, 1, K1, K3, L2,
L3, L9, M3, 85, W8, Z2)

The papers in this group describe a computer archi-
tecture and include some comments relating to the
type and number of busses. Z2 is an example of a dedi-
cated bus, while Al presents a non-dedicated bus. Al,
D10, L2, L3, and Z2 are cases of bus structures with

different numbers of busses. B2 points out the hierarch-
ical nature of bus structures. F2is an example of a store
and forward bus structure with dedicated busses and
extensive routing control.

Control methods
(Al, A2, B7, P1, P2, P3, Q1, 82, S6, S8, W2, W4, Y1)

The majority of the control techniques are some form
of either centralized independent requests (A2, or de-
centralized daisy chaining (Al). P1 uses polling, and
P2 deals with priority control of a system.

Communication techniques

(C6, C7, D5, F1, G3, G4, H2, H4, M1, R2, R3, R4,
S1, 83, S4, 89, T1, W6, W7)

These papers tend to be concerned with communica-
tion techniques directly rather than as a subsidiary
topic. R2 discusses the information lines necessary to
communicate in a system. C6, C7, and M1 cover syn-
chronous systems. H4 and S3 are good presentations of
the synchronous clock skew problem. S4 deals with the
design of a frame and slotted system. F1 describes the
use of phase-locked loops for synchronism, while W7
uses bit stuffing for synchronization. The synchronous
system in H2 uses a combination of global and local
timing. R3 deals with a synchronous system with non-
dedicated time slots. D5 contains a good summary of
asynchronous communication, and G3 furnishes further
examples. G4 points out the importance of communica-
tion in digital systems.

Data transfer philosophies
(A4, C1, C3, C4, C5, G2, H1, L5, L8, M2, W3)

Papers in this category are concerned with the
philosophies of data transfers. A4 is about transmission
error checking and serial-by-byte transmission. C3,
C4, and C5 cover buffering and block size from a sta-
tistical point of view in simple bus structures such as
“loops.” G2 studies the choice of block sizes. L5 con-
siders the buffering problem.

Bus width
(B3, B5, G3, C4, C5, K2, R1, T5, Z1)

These papers address the problem of reducing the
number of lines in the bus. B3 deals with line drivers

734

Fall Joint Computer Conference, 1972

and receivers, and contains an extensive bibliography on
transmission line papers. B5 discusses balancing the
overall system configuration. C3, C4, and C5 are inter-
ested in the relationships of burst lengths, number of
lines, ete. K2 describes a transmission system utilizing
multilevel encoding. T5 is a comprehensive study of line
reduction, and includes all the tradeoffs on buffering,
multilevel codes, etc., in the design of an actual bus. A
machine with a single 200 line bus structure is the topic
of R1. ’

REFERENCES

Al

A2

R L ALONSO et al

A multiprocessing structure

Proceedings IEEE Computer Conference September 1967
pp 56-59

This paper describes 2 multiprocessor system with non-dedi-
cated instruction and data busses. The control method is a
simple decentralized daisy chain.

S J ANDELMAN

Real-time I/0 techniques to reduce system costs

. Computer Design May 1966 pp 48-54

A3

A4

B1

This. article describes two real-time I/O applications and
how a computer is used in each. It also indicates the
relationships among the system executive, the CPU
computations, and the I/0 data bus. It includes centralized
bus control.

J P ANDERSON et al

D825—a multiple-computer system for command and conirol
Proceedings FJCC 1962 AFIPS Press pp 86-96

This paper functionally describes the switch interlock
system of the Burroughs D825 system. The switch is
essentially a crossbar which can handle up to 64 devices.
A priority-oriented bus allocation mechanism handles
conflicting allocation requests. Priorities are preemptive.

A AVIZIENIS

Destgn of fault-tolerant computers

Proceedings FJCC 1967 AFIPS Press pp 733-743

This paper describes the internal structure of the JPL-STAR
computer. The bus structure consists of two busses and two
bus checkers. The busses transmit information in four-bit
bytes and the bus checkers check for transmission errors.
K E BATCHER

Sorting networks and their application

Proceedings SJCC 1968 AFIPS Press pp 307-314

This paper describes various configurations of bitonic sorting
networks which can be utilized as routing networks or
permutation switches in multiprocessor systems.

B2 H R BEELITZ

System architecture for large-scale integration

Proceedings FJCC 1967 AFIPS Press pp 185-200

This paper describes the architecture of LIMAC. It notes
the hierarchical nature of bus structures, stating, “‘A local bus
structure interconnects the sub-partitions of a functional
module in the same sense that the machine bus interconnects
all functional modules.”

B3 R O BERG et al

PEPE implementation study
Honeywell Report 12251-FR, Prepared for System
Development Corporation under Subcontract SDC-71-61

B4

B5

B6

B7

C1

C2

C3

This report contains an extensive bibliography of signal
transmission papers and a survey of line drivers and
receivers. It also describes the bus designs for the PEPE
multiprocessor system. '

N A BOEHMER et al

Advanced avionic digital computer—arithmetic and control
unit design

Hughes Aircraft Report P70-517 prepared under Navy
contract N62269-70-C-0534 December 1970

This report describes a main data bus design for the
Advanced Avionic Digital Computer, including the bus
communication and allocation mechanisms.

F P BROOKS K E IVERSON

Automatic data processing

Wiley New York 1969 Section 5.4 Parameters of computer
organization pp 250-262

This section descusses speed/cost/balance tradeoffs in
computer architecture. Of specific interest is how bus width,
speed, and degree of parallelism affect computer perfor-
mance. Examples of tradeoff results are given in terms of
the System/360.

W BUCHHOLZ

Planning a computer system

McGraw-Hill New York 1962

Chapter 16 of this book describes the data exchange of the
STRETCH computer. The data exchange is a switched bus
which handles data flow among I/0 and external storage
units and the primary store. It is independent of CPU
processes and able to function concurrently with the central
Processor.

H B BURNER et al

A programmable data concenirator for a large computing
system

IEEE Transactions on Computers November 1969 pp
1030-1038

This paper describes the internal structure of a data
concentrator to be used with an IBM 360/67. The concen-
trator utilizes an Interdata Model 4 computer. The details
of the bus structure, including timing and control signals,
are given. The system was built and utilized at Washington
State University, Pullman, Washington.

G N CEDARQUIST

An input/output system for a multiprogrammed computer
Report No 223 April 1967 Department of Computer
Science University of Illinois

This report describes the architecture of 1/0 systems, and
deals with some parameters of bus structures through
discussion of data transfers. It is primarily concerned with
the implementation of centralized control and communica-
tion logic.

Y CE CHEN D L EPLEY

Bounds on memory requirements of multiprocessing systems
Proceedings 6th Annual Allerton Conference on Circuit and
System Theory October 1968 pp 523-531

This paper presents a model of a multiprocessor with a
multilevel memory. Given a computation graph with
specified execution times and main memory requirements,
bounds on the required main memory and the inter-memory
channel rates are calculated. The trade-off between main
memory size and backing memory channel capacity is
discussed at some length.

W W CHU

A study of asynchronous time division multiplexing for time
sharing computer systems

Proceedings FJCC 1969 AFIPS Press pp 669-678

Systematic Approach to Design of Digital Bussing Structures

735

C4

C5

Cé

C7

C8

C9

D1

This paper describes the use of an asynchronous time
division multiplexing system. A model is given which relates
buffer size and queuing delays to traffic, number of lines, and
burst lengths.

W W CHU

Demultiplexing considerations for statistical muliiplexers
IEEE Transactions on Computers June 1972 pp 603-609
This paper discusses tradeoffs and simulation results useful
in the design of buffers used in a computer communication
system. The tradeoffs between message lengths, buffer size,
traffic intensity, ete., are considered.

W W CHU A G KONHEIM

On the analysis and modeling of a class of computer
commumnication systems

IEEE Transactions on Communications June 1972

pp 645-660

This paper derives models for a computer communication
environment, applied to star and loop bus structure
systems. The model provides a means of relating statistical
parameters for traffic intensities, message lengths, ete.

N CLARK A C GANNET

Computer-to-computer communication ot 2.5 megabit/sec
Proceedings of IFTP Congress 62 North Holland Publishing
Company September 1962 pp 347-353

This paper describes an experimental synchronous high
speed (2.5 megabit/second) communication system. It
indicates the relationships of all system parts necessary to
communicate in a party-line fashion among three computers.
COLLINS RADIO CORPORATION

C-system overview 523-0661644-001 736 Dallas Texas October 1
1969

This brochure describes the architecture of the Collins
C-System, especially the design and features of the Time
Division Exchange (TDX) loop. The TDX loop is a 32
million bit-per-second serial communication link. Communi-
cation between devices is at a 2 million word-per-second
rate. The system as initially implemented contained 16
channels, with expansion to a 512 million blt-per~second
capability envisioned.

M E CONWAY

A multiprocessor system design

Proceedings FJCC 1963 AFIPS Press pp 139-146

This paper deseribes the design of a multiprocessor system
which useds a matrix switch (called a memory exchange) to
connect processors to memories. The unique feature of the
configuration is that an associative memory is placed
between each processor and the memory -exchange for
addressing purposes.

A J CRITCHLOW

Generalized multiprocessing and multiprogramming systems
Proceedings FICC 1963 AFIPS Press pp 107-126

This paper describes the state of development of multi-
processor systems in 1963. There were essentially three bus
schemes in use: the crossbar switch (Burroughs D825), the
multiple bus (CDC-3600) and the time-shared bus (IBM
STRETCH). Functional descriptions of the bus concepts
are presented.

R L DAVIS et al

A building block approach to multiprocessing

Proceedings FJCC 1972 AFIPS Press pp 685-703

This paper describes a bus structure (called a Switch
Interlock) for use in a multiprocessor. It discusses the
tradeoffs in choosing the structure, and looks at single bus,
multiple bus, multiport, and crossbar systems. The Switch
Interlock is a dedicated bus matrix switeh which supports

D2

D3

D4

D5

D6

D7

D8

D9

both single word and block transfers. The switch is designed
to be implemented for bus widths from bit-serial to fully
word-parallel.

A J DEERFIELD

Architectural study of a distributed fetch computer

NAECON 1971 Record pp 214-217

This paper describes the distributed fetch computer in
which the fetch (procedure and data) portion of the machine
is distributed to the memory modules.

A J DEERFIELD et al

Distributed fetch computer concept study

Air Force Contract No F-71-C-1417 February 1972

This report describes the design of a bus structure for use in
the distributed fetch computer. This machine repartitions
the fetch and execute portions of the processor in a multi-
processor system. The fetch units are associated with the
memories instead of being with the execute units, thus
decreasing bus traffic.

A J DEERFIELD et al

Interim report for arithmetic and control logic design study
Navy Contract N62269-72-C-0023 May 1972

This report describes a proposed bus structure for the
Advanced Avionic Digital Computer and some of the
tradeoffs considered during the design.

J B DENNIS S S PATIL

Computation structures

Chapter 4—Asynchronous Modular Systems

MIT Department of Electnca,l Engineering Cambridge
Massachusetts

This chapter describes the reasons for asynchronous
systems, and gives examples of asynchronous techniques
and their timing mechanisms. It is useful in understanding
asynchronous communications.

E W DEVORE D H LANDER

Switching in a computer complex for T / O flexibility

1964 NEC pp 445-447

This paper describes the IBM 2816 Switching Unit, the bus
system utilized to interconnect CPU’s and tape drives. It
discusses the modularity tradeoffs made in the 2816.
DIGITAL EQUIPMENT CORPORATION

PDP-11 handbook

Chapter 8—Description of the UNIBUS pp 59-68 Maynard
Massachusetts 1969

This chapter of the PDP-11 user’s manual describes the
UNIBUS functionally as a subsystem of the PDP-11. Data
transfer operations performed by the bus are described and
illustrated with examples, along with general concepts of bus
operation and control.

DIGITAL EQUIPMENT CORPORATION

PDP-11 interface

Application Note Maynard Massachusetts

This document gives a brief description of the PDP-11
UNIBUS, a single undedicated bus with centralized
daisy-chain control and fully-interlocked request/acknowl-
edge communication.

DIGITAL EQUIPMENT CORPORATION

PDP-11 unibus interface manual

DEC-11-HIAB-D Maynard Massachusetts 1970

This manual gives a detailed description of the PDP-11
UNIBUS, its operation in the computer, and methods for
interfacing peripheral equipment to the bus.

D10 S B DINMAN

Direct function processor concept for system control
Computer Design March 1970 pp 55-60
This article describes the (patented) GRI-909 bus structure.

736

Fall Joint Computer Conference, 1972

F1

F2

G1

G2

G3

The machine consists of a series of functional modules strung
between two undedicated busses with a bus modifier unit
(which serves a function similar to the alpha code on the
Harvard MARK 1V). The GRI-909 is quite similar to the
DEC PDP-11.

K FERTIG B C DUNCAN

A mew high-speed general purpose input/output mechanism
with real-time computing capability

Proceedings FJCC 1967 AFIPS Press pp 281-289.

This paper describes techniques for I/O processing of
self-clocked data utilizing phase locked loops.

H FRANK et al

Computer communication network design—experience with
theory and practice

SJCC 1972 AFIPS Press pp 255-270

This paper describes the ARPANET design from the
vantage point of two years experience with the message
switching system. ARPANET is a store and forward
message switching network in which a device interfaces into
the system by means of an interface message processor
(IMP). The IMP then routes the message through the
network topology. This paper provides insight into the
design and specification of dedicated ‘‘store-and-forward”
message switching systems.

E C GANGL

Modular avionic computer

NAECON 1972 Record pp 248-251

This paper describes the architecture of a modular computer
including its internal bus structure. The bus consists of four
parallel segments: a data bus, a status bus, a micropro-
grammed command bus, and a power distribution bus.

D H GIBSON

Considerations in block oriented systems design

Proceedings SJCC 1967 AFIPS Press pp 75-80

This paper deseribes the rationale and techniques for block
transfers between CPU and memory. The study is to
determine the affect of block size on CPU throughput.

A I GROUDAN

The SKC-2000 advanced aerospace computer

NAECON 1972 Record pp 229-235

This paper describes the SKC-2000 computer and its

~ internal bus structure. The bus operates in a request/

G4

G5

acknowledge mode of communication and can handle
devices of different speeds from 1 microsecond to larger than
a millisecond with no design changes.

H W GSCHWIND

Design of digital computers)

Communications in Digital Computer Systems Chapter 8
Section 5 Springer-Verlag New York 1967 pp 347-367
This section describes computer I/O and access paths
(busses) in terms of their communication ramifications. It
points out that “even experts failed to look at computers
seriously from a communication point of view for a
surprisingly long time.” It also details the communication
that occurs in some general computer configurations.

D C GUNDERSON

Multi-processor computing apparatus

U 8 Patent 3521238 July 13 1967

This patent describes a method of bussing in a multipro-
cessor system based upon the use of an associative switch.
This bus scheme allows processors to access a centralized
system memory by either location or some property of the
data (content addressability). Each processor has its own
individual access to the system memory so the bus is very
reliable.

H1 M L HANSON

Input/output techniques for computer communication
Computer Design June 1969 pp 42-47

This article describes the I/O systems in several UNIVAC
machines, and considers the types of data transfers, staus
words, number of lines, method of operation, etc., of these
bus structures.

H2 R H HARDIN

Self sequencing data bus technique for space shuttle
Proceedings Space Shuttle Integrated Electronic Conference
Vol 2 1971 pp 111-139

This presentation describes the design of SLAT (Slot
Assigned TDM), a data bus for space shuttle. SLAT is a
synchronous bus with global plus local synchronization, The
requirements, length, control method, clock skew, and
synchronization tradeoffs are discussed.

H3 H HELLERMAN

Digital computer system principles

Data Flow Circuits and Magnetic-Core Storage
MecGraw-Hill New York 1967 Chapter 5 pp 207-235

This chapter contains a discussion of data flow or bus
circuits, with special emphasis on the trade-offs possible
between economy and speed. The author stresses the fact
that the bus organization of a computer is a major factor
determining its performance.

H4 G P HYATT

I1

K1

K2

Digital data transmission

Computer Design Vol 6 No 11 November 1967 pp 26-30
This article deals primarily with the transmission of data in
a synchronous bus structure. It considers in detail the clock
skew problem, and describes propagation delay and
mechanization problems. It concludes that the clock pulse
should not be daisy-chained, but radially distributed, and
that the sum (worst case) of data propagation delays must
be less than the elock pulse period.

F INOSE et al

A data highway system :
Instrumentation Technology January 1971 pp 63-6

This article describes a data bus designed to interface many
digital devices together. The system is essentially a
nondedicated single bus with one wire for data and another
for addresses. The system is connected together in a “loop
configuration.” It uses a “5-value pulse” for synchroniza-
tion, ete. The system has an access time of 200 microseconds
and can handle 100 devices on a bus up to 1 kilometer in
length.

J C KAISER J GIBBON

A simplified method of transmitting and controlling digital
data

Computer Design May 1970 pp 87-91

This article treats the tradeoffs between the number of
parallel lines in a bus and the complexity of gating at the bus
destinations. The authors develop a matrix switch concept
as a data exchange under program control. The programmed
instruction thus is able to dynamically interconnect system
elements by coded pulse coincidence control of the switching
matrix.

H KANEKO A SAWAI

Multilevel PCM transmission over a cable using feedback
balanced codes

NEC 1967 pp 508-513

This paper describes a multilevel PCM code (Feedback
Balanced Code) suitable for transmission of data on a
coaxial transmission cable.

Systematic Approach to Design of Digital Bussing Structures

737

K3

K4

L1

L2

L J KOCZELA

Distributed processor organization

Advances in Computers Vol 19 Chapter 7 Communication
Busses Academic Press New York 1968 pp 346-349

This author presents a functional description of a bussing
scheme for a distributed cellular computer. Each processor
can address its own private memory plus bulk storage.
Communication between cells takes place over the bus in
two modes: Local (between two cells) and Global (controller
call plus one or more controlled cells). The intercell bus is
used for both instructions and data; all transfers are set up
and directed by the controller cell by means of eight bus
control commands.

G A KORN

Digital computer interface systems

Simulation December 1968 pp 285-298

This paper is a tutorial on digital computer interfaces. It
begins with the party line I/O bus, and covers how devices
are controlled, how interrupts are handled, and how data
channels operate. It discusses the overall subject of
interfaces (I/0 and bussing system) from the systems point
of view, describing how the subsystems all relate to each
other. '

J R LAND

Data bus concepts for the space shuttle

Proceedings Space Shuttle Integrated Electronic Conference
Vol 3 1971 pp 710-785

This presents the space shuttle data management computer
architecture from a bus-oriented viewpoint. It discusses the
properties and design characteristics of the bus structures,
and summarizes the design and mechanization trade-offs.
F J LANGLEY

A universal function unit for avionic and missile systems
NAECON Record 1971 pp 178-185

This paper discusses some trade-offs in computer architec-

. tures, and categorizes some architectures by their bus

L3

14

L5

structures, providing an example for each category. It
considers single time-shared bus systems, multiple bus
systems, crossbar systems, dual bus external ensemble
systems, multiple-bus integrated ensemble systems, ete.

R LARKIN

A mini-computer muliiprocessing system

Second Annual Computer Designers Conference Los Angeles
California February 1971 pp 231-235

The topology of communication between computer sub-
systems is discussed. Six basic topologies for communication
internal to a computer are described: (1) radial, (2) tree,
(3) bus, (4) matrix, (5) iterative, and (6) symmetric. Some
topological implications of bus structures are discussed
including the need to insure positive (one device) control of
the bus during its transmission phase. All six topologies can
be expressed in terms of dedicated and non-dedicated bus
structures.

S E LASS :

A fourth’ generation computer organization

Proceedings SICC 1968 AFIPS Press pp 435-441

This paper functionally describes the internal organization
of a ‘fourth-generation” computer including its data
channels and I/0 bus structure.

A L LEINER

Buffering between input/output and the computer
Proceedings FJCC 1962 pp 22-31

This paper describes the tradeoffs in synchronizing devices,
and considers solutions to the problem of buffering between
devices of different speeds.

L6

L7

L8

L9

M1

M2

M3

" M4

K N LEVITT

A study of data communication problems in a self-repairable
multiprocessor

Proceedings SJCC 1968 AFIPS Press pp 515-527

This paper presents a method of aerospace multiprocessor
reliability enhancement by dynamic reconfiguration using
busses which are data commutators. Two realizations of
such a bus technique are permutation switching networks
and crossbar switches.

SY LEVY

Systems utilization of large-scale integration

IEEE Transactions on Computers Vol EC-16 No 5 1967
pp 562-566

This paper describes a new approach to computer organiza-
tion based on LSI technology, employing functional
partitioning of both the data path and control. Of particular
interest is the data bus structure of an RCA Laboratories
experimental machine using LSI technology.

W A LEVY E W VEITCH

Design for computer communication systems

Computer Design January 1966 pp 36-41

This article relates memory size considerations to a user’s
wait time for a line to the memory. It is applicable to bus
bandwidth design in the analysis of buffer sizes needed to
load up a bus structure.

R C LUTZ

PCM wusing high speed memory system for switching
applications

Data and Communication Design May-June 1972 pp 26-28
This article details a method of replacing a crossbar switch
with a memory having an input and output commutation
system and some counting logic. Advantages of this
approach are low cost and linear growth.

J 8 MAYO

An approach to digital system network

IEEE Transactions on Communication Technology April
1967 pp 307-310

This paper deals with synchronizing communication be-
tween devices with unlocked clocks. A system with frame
sync is postulated and the number of bits necessary for
efficient pulse stuffing is derived.

J D MENG

A serial input/output scheme for small computers

Computer Design March 1970 pp 71-75

This article describes the trade-offs and results of designing
an I/0 data bus structure for a minicomputer.

J S8 MILLER et al

Muliiprocessor compuler system study

NASA Contract No 9-9763 March 1970

This report reviews the number and type of busses used in
several computing systems such as: CDC 6000, IBM DCS,
IBM 360 ASP series, IBM 4-Pi, Burroughs D825 and 5500,
ete. It goes on to suggest the design of a multiprocessor for
a space station. In particular the system has two busses,
one for I/O and one for internal transfers. Specifically
described are: message structure, access control, error
checking and required bandwidth. A 220 MHz bandwidth
requirement is deduced.

W F MILLER R ASCHENBRENNER

The GUS multicomputer system

IEEE Transactions on Computers December 1963

pp 671-676

This paper describes an Argonne Lab experimental com-
puter with several memory and processing subsystems. All
internal memory communication is handled by the Dis-

738 Fall Joint Computer Conference, 1972
tributor, which functions as a data exchange and is IEEE Transactions on Communication Technology June
expandable. No detailed description of the Distributor 1968 pp 349-357
operation is furnished. This paper describes the use of ‘asynchronous time
M5 R C MINNICK et al multiplexing” techniques on analog data. Basically, the
Cellular bulk transfer systems paper describes a synchronous system with non-dedicated
Air Force Contract No F19628-67-C-0293 3 AD683744 time slots.
October 1968 R4 K ROEDL R STONER
Part C of this report describes a bulk transfer system Unique synchronizing technique increases digital transmission
composed of an input array, an output array, and a mapping rate
~device. The mapping device moves data from the input to Electronics March 15 1963 pp 75-76
the output array and may contain logic. Simple bulk This note provides a method of synchronizing two devices
transfer systems are described which perform permutation having local clocks of supposedly equal frequencies.
on the data during its mapping. R5 K K ROY
P1 P E PAYNE Cellular bulk transfer system
A method of data transmission requiring mazimum turnaround PhD Thesis Montana State University Bozeman Montana
time March 1970
Computer Design November 1968 p 82 Bulk transfer systems composed of input logic, output logic,
This article deseribes a method of controlling data trans- and a mapping device are studied. The influences of
mission between devices by polling. mapping device, parallelism, etc., are considered.
P2 M PIRTLE S1 T SAITO H INOSE
Intercommunication of processors and memory Computer stmulation of generalized mutually synchronized
Proceedings FICC 1967 AFIPS Press pp 621-633 systems
This paper discusses the throughput of several different bus Symposium on Computer Processing in Communications
structures in a system configuration with the intent of Polytechnic Institute of Brooklyn April 1969 pp 559-577
providing the appropriate amount of memory bandwidth. This paper describes ten ways to mutually synchronize
It describes the allocation sequence of a typical bus, and devices having separate clocks so that data can be accurately
concludes that it can be very effective to assign .. -delivered in the correct time slot of a synchronous system.
priorities to requests, rather than to processors and busses The results of the simulation relate to the stability of the
. . . with memory systems which provide ample memory bus synchronizing methods.
bandwidth to the processors.” S2 J SANTOS M I OTERO
P3 W W PLUMMER On transferences and priorities in computer networks
Asynchronous arbiters Symposium on Computers and Automata Vol 21 1971
Computation Structures Group Memo No 56 MIT Project pp 265-275
MAC February 1971 The structure of bus (channel) controllers is considered
This memo describes logic for determining which of several using the language of automata theory. The controller is
requesting CPU’s get access and in what order to a memory. decomposed into two units: one receives requests and
It is potentially a portion of the control logic for a bus availability signals, and generates corresponding requests to
structure, and describes several different algorithms for the other unit which allocates the bus on a priority basis.
granting access. Both units are further decomposed into subunits.
Ql J T QUATSE et al S3 J W SCHWARTZ
The external access network of a modular computer system Synchronization in communication satellite systems
Proceedings SJCC 1972 AFIPS Press pp 783-790 NEC 1967 pp 526-527
This paper describes the External Access Network (EAN), This paper describes tradeoffs and potential solutions to the
a switching network designed to interface processors to clock skew problem in a widely dispersed system.
processors, processors to facilities, and memory to facilities S4 C D SMITH
in a modular time sharing system (PRIME) being built at Optimization of design parameters for serial TDM
Berkeley. The EAN acts like a crossbar switch or data Computer Design January 1972 pp 51-54
exchange, and consists of processor, device, and switch This article derives analytical tools for the analysis and
nodes. To communicate, a processor selects an available optimization of a synchronous system with global plus local
switch node and connects the appropriate device node to it. timing.
R1 R RICE W R SMITH S5 D J SPENCER
SY M BOL—a magor departure from classic software dominated Data bus design techniques
Von Neumann computing systems NASA TM-X-52876 Vol VI pp 95-113
Proceedings SJCC 1971 AFIPS Press pp 575-587 This paper discusses design alternatives for a multiplexed
This paper describes a functionally designed bus-oriented data bus to reduce point-to-point wiring cost and com-
system. The system bus consists of 200 interconnection lines plexity. The author investigates coupling, coding, and
which run the length of the mainframe. control factors for both low and high signal-to-noise ratio
R2 R RINDER . lines for handling a data rate less than five million bits per
The input/output architecture of minicomputers second.
Datamation May 1970 pp 119-124 86 D C STANGA
This article surveys the architecture of minicomputer I/0 Univac 1108 multiprocessor system
units. It describes a typical I/O bus and the lines of Proceedings SJCC 1971 AFIPS Press pp 67-74
information it would carry. This paper describes how memory accesses are made from
‘R3 M P RISTENBATT D R ROTHSCHILD the multiple processors to the multiple memory banks in the

Asynchronous time multiplexing

1108 multiprocessor system. It gives a block diagram of the

Systematic Approach to Design of Digital Bussing Structures

739

S7

S8

89

T1

T2

T3

T4

system interconnectivity and describes how the multiple
module access units operate to provide multiple access paths
to a memory module.

D J STIGLIANTI et al

Wavelength division multiplexing in light interface technology
AD-721085 March 1971 :

This report describes the fabrication of a five-channel
optical multiplexed communication line, and suggests some
alternatives for matching wavelength multiplexed light
transmission times to digital electrical circuits.

J N STURMAN

An dleratively structured general purpose digital computer
IEEE Transactions on Computers January 1968 pp 2-9
This paper describes a bus and its use in an iterative
computer. The system is a dual dedicated bus structure with
centralized control.

J N STURMAN

Asynchronous operation of an dteratively structured general
purpose digital computer

IEEE Transactions on Computers January 1968 pp 10-17
This paper describes the synchronization of an iterative
structure computer. The processing elements are connected
on a common complex symbol bus. To allow asynchronous
operation, a set of timing busses are added to the system
common complex symbol bus. The timing busses take
advantage of their transmission line properties to provide
synchronism of the processors.

F W THOBURN

A transmission conirol unit for high speed computer-to-
computer communication

IBM Journal of Research and Development November 1970
pp 614-619

This paper describes a multiplex bus system for connecting
a large number of computers together in a star organization.
Special emphasis is given to the transmission control unit,
a microprogrammed polling and interface unit which uses
synchronous two-frequency modulation and a serializer/
de-serializer unit.

K J THURBER

Programmable indexing networks

Proceedings SJCC 1970 AFIPS Press pp 51-58

This paper describes data routing networks designed to
perform a generalized index on the data during the routing
process. The indexing networks map an input vector onto
an output vector. The mapping is arbitrary and program-
mable. Several different solutions are presented with varying
hardware, speed, and timing requirements. The networks
are described in terms of shift register implementations.

K J THURBER

Permutation switching networks

Proceedings of the 1971 Computer Designer’s Conference
Industrial and Scientific Conference Management Chicago
Illinois January 1971 pp 7-24

This paper describes several permutation networks designed
to provide a programmable system capable of interconnect-
ing system elements. The networks are partitioned for LSI
implementation and can be utilized in a pipeline fashion.
Algorithms are given to determine a program to produce any
of the N! possible permutations of N input lines.

K J THURBER et al

Master executive control for AADC

Navy Contract N62269-72-C-0051 June 18 1972

This report describes a systematic approach to the design of
digital bus structures and applies this tool to the design of a
bus structure for the Advanced Avionic Digital Computer.

T5

w1

w2

W3

The structure is designed with three major requirements:
flexibility, modularity, and reliability.

A TURCZYN

High speed data transmission scheme

Proceedings 3rd Univac DPD Research and Engineering
Symposium May 1968

The increasing complexity of multiprocessor computer
systems with a high degree of parallelism within the
computer system has created major internal communication
problems. If each processing unit should be able to com-
municate with many other subsystems, the author recom-
mends either a data exchange, or switching center, or
parallel point-to-point wiring. The latter has the advantage
of fast transfer and minimal data registers, but in a
multiprocessor it results in a large number of cables. This
paper discusses the state-of-the-art of internal multiplexing
and multi-level coding schemes for reducing the number of
lines in the system.

E G WAGNER

On connecting modules together uniformly to form a modular
computer

IEEE Transactions on Computers December 1966

pp 864-872

This paper provides mathematical group theoretic precision
to the idea of uniform bus structure in cellular computers.

P W WARD g

A scheme for dynamic priority control in demand actuated
multiplexing

IEEE Computer Society Conference Boston September
1971 pp 51-52

This paper describes a priority conflict resolution method
which is used in an I/0Q multiplexer system.

R WATSON

Timesharing system design concepts

Chapter 3—Communications McGraw-Hill 1970 pp 78-110
This chapter provides a summary of ‘‘communication’
among memories, processors, IOP’s, etc. The discussion is
oriented toward example configurations. Subjects discussed
are: (1) use of multiple memory modules, interleaving, and
buffering to increase memory bandwidth; (2) connection of
subsystems using direct connections, crossbar switches,
multiplexed busses, etc.; and (3) the transmission medium.
Items discussed under transmission medium are synchronous
and asynchronous transmission, line types (simplex, half-
duplex, and full-duplex), modulation, etc.

W4 D R WELLER

W5

Wwé

A loop communication system for 1/0 to a small multi-user
computer

IEEE Computer Society Conference Boston September
1971 pp 49-50

This paper describes a single-line non-dedicated bus with
daisy-chained control for the DDP-516 computer. Message
format and speed of operation are detailed.

G P WEST R J KOERNER

Communications within a polymorphic intellectronic system
Proceedings of Western Joint Computer Conference San
Francisco May 3-5 1960 pp 225-230

This paper describes a crosspoint data exchange used in the
RW-400 computer. The switch was mechanized using
transfluxor cores.

L P WEST

Loop-transmission control structures

IEEE Transactions on Communications June 1972

pp 531-539

This paper considers the problem of transmitting data on a

740

Fall Joint Computer Conference, 1972

W7

w8

Y1

communication loop. It discusses time slots, frame pulses,
addressing techniques, and efficiency of utilization. It also
discusses a. number of ways for assigning time slots for
utilization on the impact of slot size on loop utilization
efficiency.

M W WILLARD ' L J HORKAN

M aintaining bit integrity in time division transmission
NAECON 1971 Record pp 240-247

This paper describes the tradeoffs involved in synchronizing
high speed digital subsystems which are communicating
over large distances. It considers clocking and buffering
tradeofis.

D R WULFINGHOFF

Code activated switching—a solution to multiprocessing
problems

Computer Design April 1971 pp 67-71

The author points out that multiprocessor computer
configurations have a large number of interconnections
between elements causing considerable hardware and
software complexity. He describes a technique whereby
each program to be run is assigned a code, identifier, or
signature; then when this program is activated the system
resources it requires can be “lined-up’’ for use. He compares
this scheme to that employed for telephone switching. Code
activated switching is illustrated by two system block
diagrams: a special purpose control computer and a general
purpose time-shared computer. '

B S YOLKEN

Data bus—method for data acquisition and distribution
within vehicles

-NAECON 1971 Record pp 248-253

This paper discusses a time division multiplexed bus, and

Z1

Z2

considers bus control, bit synchronization, and technology
tradeoffs.

R E ZIMMERMAN

The structure and organization of communication processors
PhD Dissertation Electrical Engineering Department
University of Michigan September 1971

This dissertation describes a multi-bus computer used as a
terminal processor. It has a pair of instruction busses which
start and then signal completion of processes performed in
functional units or subsystems. The machine has three data
busses: a memory bus which serves as the primary system
communication bus, a flag address bus, and a flag data bus.
All busses are eight bits wide and the three data busses are
bidirectional.

R J ZINGG

Structure and organization of a patiern processor for
hand-printed character recognition

PhD Dissertation Iowa State University Ames Iowa 1968
This dissertation describes a bus-oriented special purpose
computer designed for research in character recognition.
The machine contains a control bus, a scratchpad memory
bus, and three data busses. Each register that can be
reached by a data bus has two control flip-flops associated
with it and these determine to which data bus it is to be
connected. These connections are controlled by a hardware
command. The contents of several registers can be placed on
one data bus to yield a bit-by-bit logical inclusive OR.
Also, the contents of one data bus can be transferred to
several registers and the contents of all three busses
transferred in parallel under program command. This
processor is a rather interesting example of a five bus
processor.

Imprbvements in the design and
performance of the ARPA network

by J. M. McQUILLAN, W. R. CROWTHER, B. P. COSELL, D. C. WALDEN, and

F. E. HEART

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

In late 1968 the Advanced Research Projects Agency
of the Department of Defense (ARPA) embarked on
the implementation of a new type of computer network
which would interconnect, via common-carrier circuits,
a number of dissimilar computers at widely separated,
ARPA-spons